Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Biotechnol Bioeng ; 121(4): 1257-1270, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38328831

RESUMEN

Enabling real-time monitoring and control of the biomanufacturing processes through product quality insights continues to be an area of focus in the biopharmaceutical industry. The goal is to manufacture products with the desired quality attributes. To realize this rigorous attribute-focused Quality by Design approach, it is critical to support the development of processes that consistently deliver high-quality products and facilitate product commercialization. Time delays associated with offline analytical testing can limit the speed of process development. Thus, developing and deploying analytical technology is necessary to accelerate process development. In this study, we have developed the micro sequential injection process analyzer and the automatic assay preparation platform system. These innovations address the unmet need for an automatic, online, real-time sample acquisition and preparation platform system for in-process monitoring, control, and release of biopharmaceuticals. These systems can also be deployed in laboratory areas as an offline analytical system and on the manufacturing floor to enable rapid testing and release of products manufactured in a good manufacturing practice environment.


Asunto(s)
Tecnología Farmacéutica , Control de Calidad
2.
Biomacromolecules ; 22(4): 1695-1705, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33783189

RESUMEN

We report a metal free synthetic hydrogel copolymer with affinity and selectivity for His6-tagged peptides and proteins. Small libraries of copolymers incorporating charged and hydrophobic functional groups were screened by an iterative process for His6 peptide affinity. The monomer selection was guided by interactions found in the crystal structure of an anti-His tag antibody-His6 peptide antigen complex. Synthetic copolymers incorporating a phenylalanine-derived monomer were found to exhibit strong affinity for both His6-containing peptides and proteins. The proximity of both aromatic and negatively charged functional groups were important factors for the His6 affinity of hydrogel copolymers. His6 affinity was not compromised by the presence of enzyme cleavage sequences. The His6-copolymer interactions are pH sensitive: the copolymer selectively captured His6 peptides at pH 7.8 while the interactions were substantially weakened at pH 8.6. This provided mild conditions for releasing His6-tagged proteins from the copolymer. Finally, a synthetic copolymer coated chromatographic medium was prepared and applied to the purification of a His6-tagged protein from an E. coli expression system. The results establish that a synthetic copolymer-based affinity medium can function as an effective alternative to immobilized metal ion columns for the purification of His6-tagged proteins.


Asunto(s)
Escherichia coli , Polímeros , Cromatografía de Afinidad , Escherichia coli/genética , Metales , Proteínas , Proteínas Recombinantes
3.
Bioorg Med Chem Lett ; 30(21): 127499, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32858124

RESUMEN

Agonism of the endothelial receptor APJ (putative receptor protein related to AT1; AT1: angiotensin II receptor type 1) has the potential to ameliorate congestive heart failure by increasing cardiac output without inducing hypertrophy. Although the endogenous agonist, pyr-apelin-13 (1), has shown beneficial APJ-mediated inotropic effects in rats and humans, such effects are short-lived given its extremely short half-life. Here, we report the conjugation of 1 to a fatty acid, providing a lipidated peptide (2) with increased stability that retains inotropic activity in an anesthetized rat myocardial infarction (MI) model. We also report the preparation of a library of 15-mer APJ agonist peptide-lipid conjugates, including adipoyl-γGlu-OEG-OEG-hArg-r-Q-hArg-P-r-NMeLeuSHK-G-Oic-pIPhe-P-DBip-OH (17), a potent APJ agonist with high plasma protein binding and a half-life suitable for once-daily subcutaneous dosing in rats. A correlation between subcutaneous absorption rate and lipid length/type of these conjugates is also reported.


Asunto(s)
Receptores de Apelina/agonistas , Lípidos/farmacología , Infarto del Miocardio/tratamiento farmacológico , Péptidos/farmacología , Animales , Receptores de Apelina/metabolismo , Relación Dosis-Respuesta a Droga , Inyecciones Intravenosas , Lípidos/administración & dosificación , Lípidos/química , Estructura Molecular , Infarto del Miocardio/metabolismo , Péptidos/administración & dosificación , Péptidos/química , Ratas , Relación Estructura-Actividad
4.
Drug Metab Dispos ; 47(10): 1111-1121, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31387871

RESUMEN

The identification of nonopioid alternatives to treat chronic pain has received a great deal of interest in recent years. Recently, the engineering of a series of Nav1.7 inhibitory peptide-antibody conjugates has been reported, and herein, the preclinical efforts to identify novel approaches to characterize the pharmacokinetic properties of the peptide conjugates are described. A cryopreserved plated mouse hepatocyte assay was designed to measure the depletion of the peptide-antibody conjugates from the media, with a correlation being observed between percentage remaining in the media and in vivo clearance (Pearson r = -0.5525). Physicochemical (charge and hydrophobicity), receptor-binding [neonatal Fc receptor (FcRn)], and in vivo pharmacokinetic data were generated and compared with the results from our in vitro hepatocyte assay, which was hypothesized to encompass all of the aforementioned properties. Correlations were observed among hydrophobicity; FcRn binding; depletion rates from the hepatocyte assay; and ultimately, in vivo clearance. Subsequent studies identified potential roles for the low-density lipoprotein and mannose/galactose receptors in the association of the Nav1.7 peptide conjugates with mouse hepatocytes, although in vivo studies suggested that FcRn was still the primary receptor involved in determining the pharmacokinetics of the peptide conjugates. Ultimately, the use of the cryopreserved hepatocyte assay along with FcRn binding and hydrophobic interaction chromatography provided an efficient and integrated approach to rapidly triage molecules for advancement while reducing the number of in vivo pharmacokinetic studies. SIGNIFICANCE STATEMENT: Although multiple in vitro and in silico tools are available in small-molecule drug discovery, pharmacokinetic characterization of protein therapeutics is still highly dependent upon the use of in vivo studies in preclinical species. The current work demonstrates the combined use of cryopreserved hepatocytes, hydrophobic interaction chromatography, and neonatal Fc receptor binding to characterize a series of Nav1.7 peptide-antibody conjugates prior to conducting in vivo studies, thus providing a means to rapidly evaluate novel protein therapeutic platforms while concomitantly reducing the number of in vivo studies conducted in preclinical species.


Asunto(s)
Dolor Crónico/tratamiento farmacológico , Antígenos de Histocompatibilidad Clase I/metabolismo , Inmunoconjugados/farmacocinética , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Receptores Fc/metabolismo , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacocinética , Administración Intravenosa , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/farmacocinética , Criopreservación , Evaluación Preclínica de Medicamentos/métodos , Hepatocitos , Antígenos de Histocompatibilidad Clase I/genética , Inmunoconjugados/administración & dosificación , Macaca fascicularis , Masculino , Tasa de Depuración Metabólica , Ratones , Ratones Noqueados , Péptidos/administración & dosificación , Péptidos/farmacocinética , Receptores Fc/genética , Distribución Tisular , Bloqueadores del Canal de Sodio Activado por Voltaje/administración & dosificación
5.
Biotechnol Bioeng ; 116(9): 2393-2411, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31112285

RESUMEN

The new and rapid advancement in the complexity of biologics drug discovery has been driven by a deeper understanding of biological systems combined with innovative new therapeutic modalities, paving the way to breakthrough therapies for previously intractable diseases. These exciting times in biomedical innovation require the development of novel technologies to facilitate the sophisticated, multifaceted, high-paced workflows necessary to support modern large molecule drug discovery. A high-level aspiration is a true integration of "lab-on-a-chip" methods that vastly miniaturize cellulmical experiments could transform the speed, cost, and success of multiple workstreams in biologics development. Several microscale bioprocess technologies have been established that incrementally address these needs, yet each is inflexibly designed for a very specific process thus limiting an integrated holistic application. A more fully integrated nanoscale approach that incorporates manipulation, culture, analytics, and traceable digital record keeping of thousands of single cells in a relevant nanoenvironment would be a transformative technology capable of keeping pace with today's rapid and complex drug discovery demands. The recent advent of optical manipulation of cells using light-induced electrokinetics with micro- and nanoscale cell culture is poised to revolutionize both fundamental and applied biological research. In this review, we summarize the current state of the art for optical manipulation techniques and discuss emerging biological applications of this technology. In particular, we focus on promising prospects for drug discovery workflows, including antibody discovery, bioassay development, antibody engineering, and cell line development, which are enabled by the automation and industrialization of an integrated optoelectronic single-cell manipulation and culture platform. Continued development of such platforms will be well positioned to overcome many of the challenges currently associated with fragmented, low-throughput bioprocess workflows in biopharma and life science research.


Asunto(s)
Automatización , Productos Biológicos , Descubrimiento de Drogas , Dispositivos Laboratorio en un Chip , Humanos
6.
Bioorg Med Chem Lett ; 25(21): 4866-4871, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26112439

RESUMEN

Many efforts are underway to develop selective inhibitors of the voltage-gated sodium channel NaV1.7 as new analgesics. Thus far, however, in vitro selectivity has proved difficult for small molecules, and peptides generally lack appropriate pharmacokinetic properties. We previously identified the NaV1.7 inhibitory peptide GpTx-1 from tarantula venom and optimized its potency and selectivity via structure-guided analoging. To further understand GpTx-1 binding to NaV1.7, we have mapped the binding site to transmembrane segments 1-4 of the second pseudosubunit internal repeat (commonly referred to as Site 4) using NaV1.5/NaV1.7 chimeric protein constructs. We also report that select GpTx-1 amino acid residues apparently not contacting NaV1.7 can be derivatized with a hydrophilic polymer without adversely affecting peptide potency. Homodimerization of GpTx-1 with a bifunctional polyethylene glycol (PEG) linker resulted in a compound with increased potency and a significantly reduced off-rate, demonstrating the ability to modulate the function and properties of GpTx-1 by linking to additional molecules.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Péptidos/química , Péptidos/farmacología , Ingeniería de Proteínas , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Dimerización , Relación Dosis-Respuesta a Droga , Humanos , Conformación Molecular , Unión Proteica , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Bloqueadores del Canal de Sodio Activado por Voltaje/química
7.
J Am Chem Soc ; 136(4): 1194-7, 2014 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-24410250

RESUMEN

We describe a novel epitope discovery strategy for creating an affinity agent/peptide tag pair. A synthetic polymer nanoparticle (NP) was used as the "bait" to catch an affinity peptide tag. Biotinylated peptide tag candidates of varied sequence and length were attached to an avidin platform and screened for affinity against the polymer NP. NP affinity for the avidin/peptide tag complexes was used to provide insight into factors that contribute NP/tag binding. The identified epitope sequence with an optimized length (tMel-tag) was fused to two recombinant proteins. The tagged proteins exhibited higher NP affinity than proteins without tags. The results establish that a fusion peptide tag consisting of optimized 15 amino acid residues can provide strong affinity to an abiotic polymer NP. The affinity and selectivity of NP/tMel-tag interactions were exploited for protein purification in conjunction with immobilized metal ion/His6-tag interactions to prepare highly purified recombinant proteins. This strategy makes available inexpensive, abiotic synthetic polymers as affinity agents for peptide tags and provides alternatives for important applications where more costly affinity agents are used.


Asunto(s)
Epítopos/química , Nanopartículas/química , Péptidos/química , Polímeros/síntesis química , Avidina/química , Estructura Molecular , Tamaño de la Partícula , Polímeros/química , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Propiedades de Superficie
8.
Biopolymers ; 100(4): 422-30, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23868210

RESUMEN

Antagonism of the calcitonin gene-related peptide (CGRP) receptor may be a useful approach for migraine treatment. Selective PEGylated peptide antagonists to the CGRP receptor are described, derived from CGRP(8-37) with polymer derivatization at an engineered lysine-25 residue. Potent PEGylated peptides with improved pharmacokinetics were identified through peptide side-chain modification to mitigate metabolic liabilities. PEGylated Ac-Trp-[Cit(11,18),hArg(24),Lys(25),Asp(31),Pro(34),1-Nal(35)]CGRP(8-37)-NH2, 9, elicits a dose-dependent reduction of intradermal CGRP-induced local blood flow in rodents with an ED50 of 0.52 mg kg(-1) without any overt adverse effects.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Receptores de Péptido Relacionado con el Gen de Calcitonina
9.
Process Biochem ; 129: 241-256, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37013198

RESUMEN

One of the outcomes from the global COVID-19 pandemic caused by SARS-CoV-2 has been an acceleration of development timelines to provide treatments in a timely manner. For example, it has recently been demonstrated that the development of monoclonal antibody therapeutics from vector construction to IND submission can be achieved in five to six months rather than the traditional ten-to-twelve-month timeline using CHO cells [1], [2]. This timeline is predicated on leveraging existing, robust platforms for upstream and downstream processes, analytical methods, and formulation. These platforms also reduce; the requirement for ancillary studies such as cell line stability, or long-term product stability studies. Timeline duration was further reduced by employing a transient cell line for early material supply and using a stable cell pool to manufacture toxicology study materials. The development of non-antibody biologics utilizing traditional biomanufacturing processes in CHO cells within a similar timeline presents additional challenges, such as the lack of platform processes and additional analytical assay development. In this manuscript, we describe the rapid development of a robust and reproducible process for a two-component self-assembling protein nanoparticle vaccine for SARS-CoV-2. Our work has demonstrated a successful academia-industry partnership model that responded to the COVID-19 global pandemic quickly and efficiently and could improve our preparedness for future pandemic threats.

10.
Biotechnol Bioeng ; 109(9): 2286-94, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22447498

RESUMEN

Adequate supply of nutrients, especially providing a sufficient level of specific amino acids, is essential for cell survival and production. Complex raw materials such as soy hydrolysates or yeast extracts are the source for both free amino acids and peptides. However, typical chemically defined (CD) media provide amino acids only in free form. While most amino acids are highly soluble in media and can be provided at fairly high concentrations, certain amino acids such as tyrosine have poor solubility and thus, only a limited amount can be added as a media component. The limited solubility of amino acids in media can raise the risk of media precipitation and instability, and could contribute to suboptimal culture performance due to insufficient nutrient levels to meet cellular demands. In this study, we examine the use of chemically synthesized dipeptides as an alternative method for delivering amino acids to various monoclonal antibody producing cell lines. In particular, we focus on tyrosine-containing dipeptides. Due to their substantially higher solubility (up to 250-fold as compared with free tyrosine), tyrosine-containing dipeptides can efficiently provide large amounts of tyrosine to cultured cells. When tested in fed-batch processes, these supplemental dipeptides exerted positive effects, including enhanced culture viability and titer. Moreover, dipeptide-supplemented cultures displayed improved metabolic profiles including lower lactate and NH 4(+) production, and better pH maintenance. In bioreactor studies using two-sided pH control, a lactate spike occurring on Day 10 and the concomitant high levels of base addition could be prevented with dipeptide supplementation. These beneficial effects could be obtained by one-time addition of dipeptides during inoculation, and did not require further feeds during the entire 11-15-day process. Non-tyrosine-containing dipeptides, such as His-Gly, also showed improved productivity and viability over control cultures.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Medios de Cultivo/metabolismo , Dipéptidos/química , Dipéptidos/metabolismo , Histidina/metabolismo , Tirosina/metabolismo , Animales , Reactores Biológicos , Biotecnología , Células CHO , Supervivencia Celular/fisiología , Cricetinae , Cricetulus , Medios de Cultivo/química , Histidina/química , Concentración de Iones de Hidrógeno , Ácido Láctico/metabolismo , Lisina/química , Lisina/metabolismo , Tirosina/química
11.
J Med Chem ; 64(6): 3427-3438, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33715378

RESUMEN

Inhibition of the pituitary adenylate cyclase 1 receptor (PAC1R) is a novel mechanism that could be used for abortive treatment of acute migraine. Our research began with comparative analysis of known PAC1R ligand scaffolds, PACAP38 and Maxadilan, which resulted in the selection of des(24-42) Maxadilan, 6, as a starting point. C-terminal modifications of 6 improved the peptide metabolic stability in vitro and in vivo. SAR investigations identified synergistic combinations of amino acid replacements that significantly increased the in vitro PAC1R inhibitory activity of the analogs to the pM IC90 range. Our modifications further enabled deletion of up to six residues without impacting potency, thus improving peptide ligand binding efficiency. Analogs 17 and 18 exhibited robust in vivo efficacy in the rat Maxadilan-induced increase in blood flow (MIIBF) pharmacodynamic model at 0.3 mg/kg subcutaneous dosing. The first cocrystal structure of a PAC1R antagonist peptide (18) with PAC1R extracellular domain is reported.


Asunto(s)
Circulación Sanguínea/efectos de los fármacos , Péptidos/química , Péptidos/farmacología , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/antagonistas & inhibidores , Animales , Humanos , Proteínas de Insectos/farmacología , Masculino , Ratones , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/metabolismo , Trastornos Migrañosos/fisiopatología , Simulación del Acoplamiento Molecular , Péptidos/farmacocinética , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/química , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Vasodilatadores/farmacología
12.
J Comb Chem ; 12(5): 676-86, 2010 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-20666436

RESUMEN

Intracellular levels of the hypoxia-inducible transcription factor (HIF) are regulated under normoxic conditions by prolyl hydroxylases (PHD1, 2, and 3). Treatment of cells with PHD inhibitors stabilizes HIF-1α, eliciting an artificial hypoxic response that includes the transcription of genes involved in erythropoiesis, angiogenesis, and glycolysis. The different in vivo roles of the three PHD isoforms are not yet known, making a PHD-selective inhibitor useful as a biological tool. Although several chemical series of PHD inhibitors have been described, significant isoform selectivity has not been reported. Here we report the synthesis and activity of dipeptidyl analogues derived from a potent but non-selective quinolone scaffold. The compounds were prepared by Pd-catalyzed reductive carbonylation of the 6-iodoquinolone derivative to form the aldehyde directly, which was then attached to a solid support via reductive amination. Amino acids were coupled, and the resulting dipeptidyl-quinolone derivatives were screened, revealing retention of PHD inhibitory activity but an altered PHD1, 2, and 3 selectivity profile. The compounds were found to be ∼10-fold more potent against PHD1 and PHD3 than against PHD2, whereas the specific parent compound had shown no appreciable selectivity among the different PHD isoforms.


Asunto(s)
Dipéptidos/farmacología , Inhibidores Enzimáticos/farmacología , Isoenzimas/antagonistas & inhibidores , Procolágeno-Prolina Dioxigenasa/antagonistas & inhibidores , Quinolonas/farmacología , Técnicas Químicas Combinatorias , Dipéptidos/síntesis química , Dipéptidos/química , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Isoenzimas/química , Isoenzimas/metabolismo , Estructura Molecular , Procolágeno-Prolina Dioxigenasa/química , Procolágeno-Prolina Dioxigenasa/metabolismo , Quinolonas/síntesis química , Quinolonas/química , Estereoisomerismo , Relación Estructura-Actividad
13.
ACS Chem Biol ; 14(1): 118-130, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30507158

RESUMEN

Gating modifier toxins (GMTs) from spider venom can inhibit voltage gated sodium channels (NaVs) involved in pain signal transmission, including the NaV1.7 subtype. GMTs have a conserved amphipathic structure that allow them to interact with membranes and also with charged residues in regions of NaV that are exposed at the cell surface. ProTx-II and GpTx-1 are GMTs able to inhibit NaV1.7 with high potency, but they differ in their ability to bind to membranes and in their selectivity over other NaV subtypes. To explore these differences and gain detailed information on their membrane-binding ability and how this relates to potency and selectivity, we examined previously described NaV1.7 potent/selective GpTx-1 analogues and new ProTx-II analogues designed to reduce membrane binding and improve selectivity for NaV1.7. Our studies reveal that the number and type of hydrophobic residues as well as how they are presented at the surface determine the affinity of ProTx-II and GpTx-1 for membranes and that altering these residues can have dramatic effects on NaV inhibitory activity. We demonstrate that strong peptide-membrane interactions are not essential for inhibiting NaV1.7 and propose that hydrophobic interactions instead play an important role in positioning the GMT at the membrane surface proximal to exposed NaV residues, thereby affecting peptide-channel interactions. Our detailed structure-activity relationship study highlights the challenges of designing GMT-based molecules that simultaneously achieve high potency and selectivity for NaV1.7, as single mutations can induce local changes in GMT structure that can have a major impact on NaV-inhibitory activity.


Asunto(s)
Péptidos/efectos de los fármacos , Venenos de Araña/farmacología , Animales , Humanos , Péptidos/química
14.
ACS Chem Biol ; 14(4): 806-818, 2019 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-30875193

RESUMEN

Drug discovery research on new pain targets with human genetic validation, including the voltage-gated sodium channel NaV1.7, is being pursued to address the unmet medical need with respect to chronic pain and the rising opioid epidemic. As part of early research efforts on this front, we have previously developed NaV1.7 inhibitory peptide-antibody conjugates with tarantula venom-derived GpTx-1 toxin peptides with an extended half-life (80 h) in rodents but only moderate in vitro activity (hNaV1.7 IC50 = 250 nM) and without in vivo activity. We identified the more potent peptide JzTx-V from our natural peptide collection and improved its selectivity against other sodium channel isoforms through positional analogueing. Here we report utilization of the JzTx-V scaffold in a peptide-antibody conjugate and architectural variations in the linker, peptide loading, and antibody attachment site. We found conjugates with 100-fold improved in vitro potency relative to those of complementary GpTx-1 analogues, but pharmacokinetic and bioimaging analyses of these JzTx-V conjugates revealed a shorter than expected plasma half-life in vivo with accumulation in the liver. In an attempt to increase circulatory serum levels, we sought the reduction of the net +6 charge of the JzTx-V scaffold while retaining a desirable NaV in vitro activity profile. The conjugate of a JzTx-V peptide analogue with a +2 formal charge maintained NaV1.7 potency with 18-fold improved plasma exposure in rodents. Balancing the loss of peptide and conjugate potency associated with the reduction of net charge necessary for improved target exposure resulted in a compound with moderate activity in a NaV1.7-dependent pharmacodynamic model but requires further optimization to identify a conjugate that can fully engage NaV1.7 in vivo.


Asunto(s)
Inmunoconjugados , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Péptidos/química , Venenos de Araña/química , Bloqueadores del Canal de Sodio Activado por Voltaje , Animales , Anticuerpos/química , Descubrimiento de Drogas , Humanos , Inmunoconjugados/química , Inmunoconjugados/farmacocinética , Masculino , Ratones , Terapia Molecular Dirigida , Canal de Sodio Activado por Voltaje NAV1.7/inmunología , Péptidos/farmacocinética , Venenos de Araña/farmacocinética , Bloqueadores del Canal de Sodio Activado por Voltaje/química , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacocinética
15.
J Med Chem ; 51(9): 2758-65, 2008 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-18412318

RESUMEN

A series of conformationally constrained derivatives of glucagon-like peptide-1 (GLP-1) were designed and evaluated. By use of [Gly (8)]GLP-1(7-37)-NH2 (2) peptide as a starting point, 17 cyclic derivatives possessing i to i + 4, i to i + 5, or i to i + 7 side chain to side chain lactam bridges from positions 18 to 30 were prepared. The effect of a helix-promoting alpha-amino-isobutyric acid (Aib) substitution at position 22 was also evaluated. The introduction of i to i + 4 glutamic acid-lysine lactam constraints in c[Glu (18)-Lys (22)][Gly (8)]GLP-1(7-37)-NH2 (6), c[Glu (22)-Lys (26)][Gly (8)]GLP-1(7-37)-NH2 (10), and c[Glu (23)-Lys (27)][Gly (8)]GLP-1(7-37)-NH2 (11) resulted in potent functional activity and receptor affinities comparable to native GLP-1. Selected GLP-1 peptides were chemoselectively PEGylated in order to prolong their in vivo activity. PEGylated peptides [Gly (8),Aib (22)]GLP-1(7-37)-Cys ((PEG))-Ala-NH2 (23) and c[Glu (22)-Lys (26)][Gly (8)]GLP-1(7-37)-Cys ((PEG))-Ser-Gly-NH2 (24) retained picomolar functional potency and avid receptor binding properties. Importantly, PEGylated GLP-1 peptide 23 exhibited sustained in vivo efficacy with respect to blood glucose reduction and decreased body weight for several days in nonhuman primates.


Asunto(s)
Péptido 1 Similar al Glucagón/análogos & derivados , Péptido 1 Similar al Glucagón/síntesis química , Hipoglucemiantes/síntesis química , Receptores de Glucagón/agonistas , Secuencia de Aminoácidos , Animales , Glucemia/análisis , Peso Corporal/efectos de los fármacos , Células CHO , Cricetinae , Cricetulus , Diseño de Fármacos , Péptido 1 Similar al Glucagón/farmacología , Receptor del Péptido 1 Similar al Glucagón , Humanos , Hipoglucemiantes/farmacología , Macaca fascicularis , Ratones , Ratones Mutantes , Modelos Moleculares , Datos de Secuencia Molecular , Plasma , Polietilenglicoles/química , Conformación Proteica , Ensayo de Unión Radioligante , Receptores de Glucagón/genética , Relación Estructura-Actividad
16.
Sci Rep ; 8(1): 7570, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29765112

RESUMEN

Small molecules and antibodies each have advantages and limitations as therapeutics. Here, we present for the first time to our knowledge, the structure-guided design of "chemibodies" as small molecule-antibody hybrids that offer dual recognition of a single target by both a small molecule and an antibody, using DPP-IV enzyme as a proof of concept study. Biochemical characterization demonstrates that the chemibodies present superior DPP-IV inhibition compared to either small molecule or antibody component alone. We validated our design by successfully solving a co-crystal structure of a chemibody in complex with DPP-IV, confirming specific binding of the small molecule portion at the interior catalytic site and the Fab portion at the protein surface. The discovery of chemibodies presents considerable potential for novel therapeutics that harness the power of both small molecule and antibody modalities to achieve superior specificity, potency, and pharmacokinetic properties.


Asunto(s)
Dipeptidil Peptidasa 4/química , Inhibidores Enzimáticos/síntesis química , Inmunoconjugados/farmacología , Animales , Anticuerpos Monoclonales/química , Dominio Catalítico , Cristalografía por Rayos X , Diseño de Fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inmunoconjugados/química , Modelos Moleculares , Ratas , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
17.
J Med Chem ; 61(21): 9500-9512, 2018 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-30346167

RESUMEN

Inhibitors of the voltage-gated sodium channel NaV1.7 are being investigated as pain therapeutics due to compelling human genetics. We previously identified NaV1.7-inhibitory peptides GpTx-1 and JzTx-V from tarantula venom screens. Potency and selectivity were modulated through attribute-based positional scans of native residues via chemical synthesis. Herein, we report JzTx-V lead optimization to identify a pharmacodynamically active peptide variant. Molecular docking of peptide ensembles from NMR into a homology model-derived NaV1.7 structure supported prioritization of key residues clustered on a hydrophobic face of the disulfide-rich folded peptide for derivatization. Replacing Trp24 with 5-Br-Trp24 identified lead peptides with activity in electrophysiology assays in engineered and neuronal cells. 5-Br-Trp24 containing peptide AM-6120 was characterized in X-ray crystallography and pharmacokinetic studies and blocked histamine-induced pruritis in mice after subcutaneous administration, demonstrating systemic NaV1.7-dependent pharmacodynamics. Our data suggests a need for high target coverage based on plasma exposure for impacting in vivo end points with selectivity-optimized peptidic NaV1.7 inhibitors.


Asunto(s)
Descubrimiento de Drogas , Histamina/efectos adversos , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Péptidos/química , Péptidos/farmacología , Prurito/tratamiento farmacológico , Venenos de Araña/química , Animales , Células HEK293 , Humanos , Ratones , Simulación del Acoplamiento Molecular , Canal de Sodio Activado por Voltaje NAV1.7/química , Péptidos/farmacocinética , Péptidos/uso terapéutico , Conformación Proteica , Pliegue de Proteína , Prurito/inducido químicamente , Relación Estructura-Actividad , Distribución Tisular , Bloqueadores del Canal de Sodio Activado por Voltaje/química , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacocinética , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/uso terapéutico
18.
PLoS One ; 13(5): e0196791, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29723257

RESUMEN

Identification of voltage-gated sodium channel NaV1.7 inhibitors for chronic pain therapeutic development is an area of vigorous pursuit. In an effort to identify more potent leads compared to our previously reported GpTx-1 peptide series, electrophysiology screening of fractionated tarantula venom discovered the NaV1.7 inhibitory peptide JzTx-V from the Chinese earth tiger tarantula Chilobrachys jingzhao. The parent peptide displayed nominal selectivity over the skeletal muscle NaV1.4 channel. Attribute-based positional scan analoging identified a key Ile28Glu mutation that improved NaV1.4 selectivity over 100-fold, and further optimization yielded the potent and selective peptide leads AM-8145 and AM-0422. NMR analyses revealed that the Ile28Glu substitution changed peptide conformation, pointing to a structural rationale for the selectivity gains. AM-8145 and AM-0422 as well as GpTx-1 and HwTx-IV competed for ProTx-II binding in HEK293 cells expressing human NaV1.7, suggesting that these NaV1.7 inhibitory peptides interact with a similar binding site. AM-8145 potently blocked native tetrodotoxin-sensitive (TTX-S) channels in mouse dorsal root ganglia (DRG) neurons, exhibited 30- to 120-fold selectivity over other human TTX-S channels and exhibited over 1,000-fold selectivity over other human tetrodotoxin-resistant (TTX-R) channels. Leveraging NaV1.7-NaV1.5 chimeras containing various voltage-sensor and pore regions, AM-8145 mapped to the second voltage-sensor domain of NaV1.7. AM-0422, but not the inactive peptide analog AM-8374, dose-dependently blocked capsaicin-induced DRG neuron action potential firing using a multi-electrode array readout and mechanically-induced C-fiber spiking in a saphenous skin-nerve preparation. Collectively, AM-8145 and AM-0422 represent potent, new engineered NaV1.7 inhibitory peptides derived from the JzTx-V scaffold with improved NaV selectivity and biological activity in blocking action potential firing in both DRG neurons and C-fibers.


Asunto(s)
Analgésicos/aislamiento & purificación , Canal de Sodio Activado por Voltaje NAV1.7/efectos de los fármacos , Péptidos/química , Bloqueadores de los Canales de Sodio/aislamiento & purificación , Venenos de Araña/química , Potenciales de Acción/efectos de los fármacos , Sustitución de Aminoácidos , Analgésicos/farmacología , Animales , Capsaicina/farmacología , Línea Celular , Evaluación Preclínica de Medicamentos , Ganglios Espinales/efectos de los fármacos , Humanos , Masculino , Ratones Endogámicos C57BL , Mutagénesis Sitio-Dirigida , Fibras Nerviosas Amielínicas/efectos de los fármacos , Resonancia Magnética Nuclear Biomolecular , Técnicas de Placa-Clamp , Estimulación Física , Ingeniería de Proteínas , Proteínas Recombinantes/efectos de los fármacos , Bloqueadores de los Canales de Sodio/farmacología , Relación Estructura-Actividad , Tetrodotoxina/farmacología
19.
Curr Opin Chem Biol ; 38: 70-79, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28376346

RESUMEN

The number of new toxin peptide discoveries has been rapidly growing in the past few decades. Because of progress in proteomics, sequencing technologies, and high throughput bioassays, the search for new toxin peptides from venom collections and potency optimization has become manageable. However, to date, only six toxin peptide-derived therapeutics have been approved by the USFDA, with only one, ziconotide, for a pain indication. The challenge of venom-derived peptide therapeutic development remains in improving selectivity to the target and more importantly, in delivery of these peptides to the sites of action in the central and peripheral nervous system. In this review, we highlight peptide toxins that target major therapeutic targets for pain and discuss the challenges of developing toxin peptides as potential therapeutics.


Asunto(s)
Descubrimiento de Drogas/métodos , Dolor/tratamiento farmacológico , Péptidos/farmacología , Toxinas Biológicas/farmacología , Animales , Humanos , Péptidos/uso terapéutico , Toxinas Biológicas/uso terapéutico
20.
Front Pharmacol ; 8: 838, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29209212

RESUMEN

The iron exporter ferroportin and its ligand, the hormone hepcidin, control fluxes of stored and recycled iron for use in a variety of essential biochemical processes. Inflammatory disorders and malignancies are often associated with high hepcidin levels, leading to ferroportin down-regulation, iron sequestration in tissue macrophages and subsequent anemia. The objective of this research was to develop reagents to characterize the expression of ferroportin, the interaction between ferroportin and hepcidin, as well as to identify novel ferroportin antagonists capable of maintaining iron export in the presence of hepcidin. Development of investigative tools that enabled cell-based screening assays is described in detail, including specific and sensitive monoclonal antibodies that detect endogenously-expressed human and mouse ferroportin and fluorescently-labeled chemically-synthesized human hepcidin. Large and small molecule antagonists inhibiting hepcidin-mediated ferroportin internalization were identified, and unique insights into the requirements for interaction between these two key iron homeostasis molecules are provided.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA