Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Toxicol Ind Health ; 40(1-2): 1-8, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37876040

RESUMEN

Synthetic cosmetics, particularly hair dyes, are becoming increasingly popular among people of all ages and genders. 2,4,5,6-tetraaminopyrimidine sulfate (TAPS) is a key component of oxidative hair dyes and is used as a developer in several hair dyes. TAPS has previously been shown to absorb UVB strongly and degrade in a time-dependent manner, causing phototoxicity in human skin cells. However, the toxic effects of UVB-degraded TAPS are not explored in comparison to parent TAPS. Therefore, this research work aims to assess the toxicity of UVB-degraded TAPS than TAPS on two different test systems, that is, HaCaT (mammalian cell) and Staphylococcus aureus (a bacterial cell). Our result on HaCaT has illustrated that UVB-degraded TAPS is less toxic than parent TAPS. Additionally, UVB-exposed TAPS and parent TAPS were given to S. aureus, and the bacterial growth and their metabolic activity were assessed via CFU and phenotype microarray. The findings demonstrated that parent TAPS reduced bacterial growth via decreased metabolic activity; however, bacteria easily utilized the degraded TAPS. Thus, this study suggests that the products generated after UVB irradiation of TAPS is considered to be safer than their parent TAPS.


Asunto(s)
Tinturas para el Cabello , Femenino , Masculino , Animales , Humanos , Tinturas para el Cabello/toxicidad , Tinturas para el Cabello/metabolismo , Sulfatos/toxicidad , Staphylococcus aureus , Piel , Cabello , Rayos Ultravioleta/efectos adversos , Queratinocitos/metabolismo , Mamíferos
2.
Arch Microbiol ; 204(5): 266, 2022 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-35437612

RESUMEN

Endophytes can induce the defence responses and modulates physiological attributes in host plants during pathogen attacks. In the present study, 127 bacterial endophytes (BEs) were isolated from different parts of healthy soybean plant. Among them, two BEs (M-2 and M-4) resulted a significant antagonistic property against Macrophomina phaseolina, causes charcoal rot disease in soybean. The antagonistic potential was evaluated through dual culture plate assay, where M-4 expressed higher antifungal activity than M-2 against M. phaseolina. The M-4 produces cell wall degrading enzymes viz. cellulase (145.71 ± 1.34 µgmL-1), chitinase (0.168 ± 0.0009 unitmL-1) and ß,1-3 endoglucanase (162.14 ± 2.5 µgmL-1), which helps in cell wall disintegration of pathogens. Additionally, M-4 also can produce siderophores, indole-3-acetic acid (IAA) (17.03 ± 1.10 µgmL-1) and had a phosphate solubilization potential (19.89 ± 0.26 µgmL-1). Further, GC-MS profiling of M-4 has been carried out to demonstrate the production of lipophilic secondary metabolites which efficiently suppress the M. phaseolina defensive compounds under co-culture conditions. Bio-efficacy study of M-4 strain shown a significant reduction in disease incidence around 60 and 80% in resistant and susceptible varieties of soybean, respectively. The inoculation of M-4 potentially enhances the physiological attributes and triggers various defence responsive enzymes viz. superoxide dismutase (SOD), phenol peroxidase (PPO), peroxidase (PO) and catalase (CAT). The histopathological study also confirmed that M-4 can reduce the persistence of microsclerotia in root and shoot tissue. Conclusively, M-4 revealed as an efficient biocontrol agent that can uses multifaceted measures for charcoal rot disease management, by suppress the M. phaseolina infection and enhance the physiological attributes of soybean.


Asunto(s)
Celulasa , Glycine max , Ascomicetos , Bacillus subtilis , Peroxidasa , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Glycine max/microbiología
3.
Appl Microbiol Biotechnol ; 106(19-20): 6455-6469, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36069926

RESUMEN

Solanum viarum serves as a raw material for the steroidal drug industry due to its alkaloid and glycoalkaloid content. Elicitation is well-known for measuring the increase in the yield of bioactive compounds in in vitro cultures. The current study was performed for the accumulation of metabolites viz. solasodine, solanidine, and α-solanine in S. viarum culture using microbial-based elicitors added in 1%, 3%, 5%, and 7% on 25th and 35th day of culture period and harvested on 45th and 50th days of culture cycle. The treatment of 3% Trichoderma reesei and Bacillus tequilensis culture filtrate (CF) significantly increased biomass, alkaloids/glycoalkaloid content, and yield in S. viarum. T. reesei was found to be the best treatment for enhanced growth (GI = 11.65) and glycoalkaloid yield (2.54 mg DW plant-1) after the 50th day of the culture cycle when added on the 25th day. The abundance of gene transcripts involved in the biosynthesis of alkaloids/glycoalkaloids, revealed by quantitative real-time PCR expression analysis correlates with the accumulation of their respective metabolites in elicited plants. Biochemical analysis shows that elicited plants inhibited oxidative damage caused by reactive oxygen species by activating enzymes (superoxide dismutase and ascorbate peroxidase) as well as non-enzymatic antioxidant mechanisms (alkaloids, total phenols, total flavonoids, carotenoids, and proline). The findings of this study clearly demonstrate that the application of T. reesei and B. tequilensis CF at a specific dose and time significantly improve biomass as well as upregulates the metabolite biosynthetic pathway in an important medicinal plant- S. viarum. KEY POINTS: • Biotic elicitors stimulated the alkaloids/glycoalkaloid content in S. viarum plant cultures. • T. reesei was found to be most efficient for enhancing the growth and alkaloids content. • Elicited plants activate ROS based-defense mechanism to overcome oxidative damage.


Asunto(s)
Alcaloides , Solanum , Alcaloides/química , Antioxidantes , Ascorbato Peroxidasas , Carotenoides , Flavonoides , Fenoles , Prolina , Especies Reactivas de Oxígeno , Solanum/química , Solanum/genética , Superóxido Dismutasa
4.
Ecotoxicol Environ Saf ; 196: 110498, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32247957

RESUMEN

Two arsenic (As) hyper-tolerant bacterial strains NM01 Paracoccus versutus and NM04 Aeromonas caviae were isolated from As polluted site of West Bengal, India. The strains not only possess the potential to tolerate up to 20,000 mgl-1 As(V) and 10,000 mgl-1 As(III) but also possess plant growth promoting (PGP) traits like phosphate solubilization, siderophore production, IAA production. Greenhouse pot experiments were conducted to assess the effect of rhizospheric inoculation of both the strains individually and in consortia in As accumulation by Adiantum capillus-veneries. It was observed that the microbial inoculation significantly (p < 0.05) increased the synthesis of thiolic compounds and thus, enhanced As accumulation with translocation factor (TF) > 1. The strains regulated endogenous phytohormone up to 90% and 77.9% increase in auxin of consortia inoculated root and shoot, respectively. Interestingly, inoculation of the isolated strains augmented rhizospheric microbial diversity which was negatively affected by heavy metal. The results of high-throughput Illumina MiSeq sequencing technique to observe the composition of the bacterial community revealed 11,536 unique bacterial operational taxonomic units (OTUs) from As + S (non-inoculated), whereas 11,884 from Consortia As + S (inoculated) rhizospheric soil samples. Inoculated soil displayed higher bacterial diversity indices (ACE and Chao 1) with the dominant bacterial phyla Proteobacteria, Actinobacteria and Firmicutes. Our results highlight the innate PGP abilities of the strains and its potential to facilitate phytoextraction by enhancing As accumulation in the shoot.


Asunto(s)
Adiantum/metabolismo , Arsénico/metabolismo , Bacterias/metabolismo , Rizosfera , Contaminantes del Suelo/metabolismo , Adiantum/crecimiento & desarrollo , Adiantum/microbiología , Arsénico/análisis , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Biodegradación Ambiental , Ácidos Indolacéticos/metabolismo , Microbiota/genética , Suelo/química , Microbiología del Suelo , Contaminantes del Suelo/análisis
5.
Environ Monit Assess ; 192(4): 221, 2020 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-32146574

RESUMEN

The deterioration of water quality of river Ganga is a huge concern for Govt. of India. Apart from various pollution sources, the religious and ritualistic activities also have a good share in deteriorating Ganga water quality. Thus, the aim of the present study was to evaluate the changes in physico-chemical properties, microbial diversity and role of bacteriophages in controlling bacterial population of Ganga water during mass ritualistic bathing on the occasion of Maha-Kumbh in 2013. The BOD, COD, hardness, TDS and level of various ions significantly increased, while DO decreased in Ganga water during Maha-Kumbh. Ganga water was more affluent in trace elements than Yamuna and their levels further increased during Maha-Kumbh, which was correlated with decreased level of trace elements in the sediment. The bacterial diversity and evenness were increased and correlated with the number of devotees taking a dip at various events. Despite enormous increase in bacterial diversity during mass ritualistic bathing, the core bacterial species found in pre-Kumbh Ganga water were present in all the samples taken during Kumbh and post-Kumbh. In addition, the alteration in bacterial population during mass bathing was well under 2 log units which can be considered negligible. The study of bacteriophages at different bathing events revealed that Ganga was richer with the presence of bacteriophages in comparison with Yamuna against seven common bacteria found during the Maha-Kumbh. These bacteriophages have played a role in controlling bacterial growth and thus preventing putrefaction of Ganga water. Further, the abundance of trace elements in Ganga water might also be a reason for suppression of bacterial growth. Thus, the current study showed that Ganga has characteristic water quality in terms of physico-chemical property and microbial diversity that might have a role in the reported self-cleansing property of Ganga; however, the increased pollution load has surpassed its self-cleansing properties. Since water has been celebrated in all cultures, the outcome of the current study will not only be useful for the policy maker of cleaning and conservation of Ganga but also for restoration of other polluted rivers all over the world.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua , Calidad del Agua , India , Ríos
6.
Pestic Biochem Physiol ; 157: 45-52, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31153476

RESUMEN

Herein, we describe the enhanced antifungal activity of silver nanoparticles biosynthesized by cell free filtrate of Trichoderma viride (MTCC 5661) in comparison to chemically synthesized silver nanoparticles (CSNP) of similar shape and size. Biosynthesized silver nanoparticles (BSNP) enhanced the reduction in dry weight by 20 and 48.8% of fungal pathogens Fusarium oxysporum and Alternaria brassicicola respectively in comparison to their chemical counterparts (CSNP). Nitroblue tetrazolium and Propidium iodide staining demonstrated the higher generation of superoxide radicals lead to higher death in BSNP treated fungus in comparison to CSNP. Scanning electron microscopy of A. brassicicola revealed the osmotic imbalance and membrane disintegrity to be major cause for fungal cell death after treatment with BSNP. To gain an insight into the mechanistic aspect of enhanced fungal cell death after treatment of BSNP in comparison to CSNP, stress responses and real time PCR analysis was carried out with A. brassicicola. It revealed that generation of ROS, downregulation of antioxidant machinery and oxidative enzymes, disruption of osmotic balance and cellular integrity, and loss of virulence are the mechanisms employed by BSNP which establishes them as superior antifungal agent than their chemical counterparts. With increasing drug resistance and ubiquitous presence of fungal pathogens in plant kingdom, BSNP bears the candidature for new generation of antifungal agent.


Asunto(s)
Antifúngicos/química , Antifúngicos/farmacología , Nanopartículas del Metal/química , Enfermedades de las Plantas/microbiología , Plata/química , Alternaria/efectos de los fármacos , Fusarium/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Oxidación-Reducción/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Superóxidos/metabolismo
7.
Appl Environ Microbiol ; 84(8)2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29453255

RESUMEN

Endophytes have been explored and found to perform an important role in plant health. However, their effects on the host physiological function and disease management remain elusive. The present study aimed to assess the potential effects of endophytes, singly as well as in combination, in Withania somnifera (L.) Dunal, on various physiological parameters and systemic defense mechanisms against Alternaria alternata Seeds primed with the endophytic bacteria Bacillus amyloliquefaciens and Pseudomonas fluorescens individually and in combination demonstrated an enhanced vigor index and germination rate. Interestingly, plants treated with the two-microbe combination showed the lowest plant mortality rate (28%) under A. alternata stress. Physiological profiling of treated plants showed improved photosynthesis, respiration, transpiration, and stomatal conductance under pathogenic stress. Additionally, these endophytes not only augmented defense enzymes and antioxidant activity in treated plants but also enhanced the expression of salicylic acid- and jasmonic acid-responsive genes in the stressed plants. Reductions in reactive oxygen species (ROS) and reactive nitrogen species (RNS) along with enhanced callose deposition in host plant leaves corroborated well with the above findings. Altogether, the study provides novel insights into the underlying mechanisms behind the tripartite interaction of endophyte-A. alternata-W. somnifera and underscores their ability to boost plant health under pathogen stress.IMPORTANCEW. somnifera is well known for producing several medicinally important secondary metabolites. These secondary metabolites are required by various pharmaceutical sectors to produce life-saving drugs. However, the cultivation of W. somnifera faces severe challenge from leaf spot disease caused by A. alternata To keep pace with the rising demand for this plant and considering its capacity for cultivation under field conditions, the present study was undertaken to develop approaches to enhance production of W. somnifera through intervention using endophytes. Application of bacterial endophytes not only suppresses the pathogenicity of A. alternata but also mitigates excessive ROS/RNS generation via enhanced physiological processes and antioxidant machinery. Expression profiling of plant defense-related genes further validates the efficacy of bacterial endophytes against leaf spot disease.


Asunto(s)
Alternaria/fisiología , Endófitos/fisiología , Enfermedades de las Plantas/microbiología , Withania/genética , Withania/microbiología , Resistencia a la Enfermedad/genética , Genes de Plantas/fisiología , Withania/inmunología
8.
Physiol Mol Biol Plants ; 24(3): 411-422, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29692549

RESUMEN

In recent years, due to the rise in food consumption, much of the attention has been focused to increase the yield of the agricultural crops which resulted in compromised nutritional quality. Efforts have to be undertaken to enhance the nutritional attributes of legumes, cereals and staple food crops by increasing amino acids and mineral content. In the present study, we evaluated a protoplast fusant (H. lixii MTCC 5659) for its ability to enhance nutritional value and defence activity in chickpea. Essential amino acids; methionine (9.82 mg kg-1 dw), cysteine (2.61 mg kg-1 dw), glycine (11.34 mg kg-1 dw), valine (9.26 mg kg-1 dw), and non-essential amino acids; aspartic acid (39.19 mg kg-1 dw) and serine (17.53 mg kg-1 dw) were significantly higher in seeds of fusant inoculated chickpea. Fusant significantly improved accumulation of mineral nutrients i.e. Cu (157.73 mg kg-1 dw), Co (0.06 mg kg-1 dw), Ni (1.85 mg kg-1 dw), Zn (157.73 mg kg-1 dw) and S (16.29 mg kg-1 dw) in seeds. Biocontrol and defence activities of chickpea increased from 20 to 35% in fusant inoculated plants suggesting its potential to ameliorate biotic stress. To the best of our knowledge, this is the first report of an increase in amino acids and mineral content of chickpea by fusant inoculation.

9.
Microb Pathog ; 105: 346-355, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27889528

RESUMEN

Spherical, rectangular, penta, and hexagonal silver nanoparticles of different dimensions were biosynthesized in an eco-friendly manner by biocontrol agent, Trichoderma viride by manipulating physical parameters, pH, temperature, and reaction time. The particles were characterized by UV-vis spectroscopy; Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM) and Fourier Transform Infra-red Spectroscopy (FTIR). Shape and size dependent antimicrobial activity of nanoparticles against human pathogens was observed. Maximum inhibition was found with spherical nanoparticles (2-5 nm) showing 40, 51, 43, 53.9 and 55.8% against Shigella sonnei, Escherichia coli, Serratia marcescens, Staphylococcus. aureus and Pseudomonas aeruginosa respectively, where as pentagonal and hexagonal nanoparticles (50-100 nm) demonstrated 32, 41, 31, 42.84 and 42.80% of inhibition as compared to control. Nanoparticles of different geometry and dimension established enhanced antagonistic activity against pathogens with all the tested antibiotics. Excellent antimicrobial efficacy was obtained with spherical nanoparticles of 2-5 nm with ampicillin and penicillin. Shape and size played major role in enhancing antimicrobial potential of silver nanoparticles, both singly and synergistically with antibiotics which can be exploited to combat the spread of multidrug resistant pathogens.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Plata/química , Plata/farmacología , Sinergismo Farmacológico , Escherichia coli/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/efectos de los fármacos , Shigella sonnei/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos
10.
Ecotoxicol Environ Saf ; 117: 72-80, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25839184

RESUMEN

Trichoderma reesei is an industrially important fungi which also imparts stress tolerance and plant growth promotion in various crops. Arsenic (As) contamination of field soils is one of the challenging problems in agriculture, posing potential threats for both human health and the environment. Plants in association with microbes are a liable method to improve metal tolerance and enhance crop productivity. Chickpea (Cicer arietinum L.), is an important grain legume providing cheap source of protein in semi-arid regions including As affected areas. In this study we report the role of T. reesei NBRI 0716 (NBRI 0716) in supporting chickpea growth and improving soil quality in As simulated conditions. NBRI 0716 modulated the As speciation and its availability to improve grain yield and quality (amino acids and mineral content) in chickpea (C. arietinum L.) plants grown in As spiked soil (100 mg As kg(-1) soil). Arsenic accumulation and speciation results indicate that arsenate [As(V)] was the dominant species in chickpea seeds and rhizosphere soil. The Trichoderma reduced total grain inorganic As (Asi) by 66% and enhanced dimethylarsonic acid (DMA) and monomethylarsinic acid (MMA) content of seed and rhizosphere soil. The results indicate a probable role of NBRI 0716 in As methylation as the possible mechanism for maneuvering As stress in chickpea. Analysis of functional diversity using carbon source utilization (Biolog) showed significant difference in diversity and evenness indices among the soil microbial rhizosphere communities. Microbial diversity loss caused by As were prevented in the presence of Trichoderma NBRI 0716.


Asunto(s)
Aminoácidos/metabolismo , Arsénico/metabolismo , Cicer/microbiología , Grano Comestible/metabolismo , Trichoderma/fisiología , Agricultura , Cicer/crecimiento & desarrollo , Cicer/metabolismo , Productos Agrícolas , Humanos , Metales/análisis , Consorcios Microbianos , Minerales/metabolismo , Proteínas/metabolismo , Rizosfera , Semillas/metabolismo , Suelo
11.
ACS Omega ; 9(6): 6305-6315, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38371762

RESUMEN

The restoration process of burned and rough skin takes a long time and remains a critical challenge. It can be repaired through a combination of proper care, hydration, and topical therapies. In this study, a novel nanoemulsion was synthesized through the high-energy ultrasonication method. A total of five nanoemulsions (NE1-5) were prepared with varying concentrations of sandalwood oil, a nonionic surfactant (polysorbate 80), and water. Among them, NE3 had a number of appropriate physicochemical characteristics, such as physiological pH (5.58 ± 0.09), refractive index (∼1.34), electrical conductivity (115 ± 0.23 mS cm-1), and transmittance (∼96.5%), which were suitable for skin care applications. The NE3 had a strong surface potential of -18.5 ± 0.15 mV and a hydrodynamic size of 61.99 ± 0.22 nm with a polydispersity index of 0.204. The structural integrity and a distinct droplet size range between 50 and 100 nm were confirmed by transmission electron microscopic analysis. The skin regeneration and restoration abilities of synthesized nanoemulsions were examined by conducting an in vivo study on Sprague-Dawley rats. Exposure to NE3 significantly increased the healing process in burned skin as compared to untreated control and nonemulsified sandalwood oil. In another set of experiments, the NE3-treated rough skin became softer, smoother, and less scaly than all other treatments. Enhanced fatty acids, i.e., palmitic acid, stearic acid, and cholesterol, were recorded in NE3-supplemented burned and rough skin compared to the untreated control. The NE3 had outstanding compatibility with key components of skincare products without any stability issues. Its biocompatibility with the cellular system was established by the negligible generation of reactive oxygen species (ROS) and a lack of genotoxicity. Considering these results, NE3 can be used in cosmetic products such as creams, lotions, and serums, allowing industries to achieve improved product formulations and provide better healthcare benefits to humanity.

12.
ACS Appl Bio Mater ; 7(2): 999-1016, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38198289

RESUMEN

Chronic wounds, such as burns and diabetic foot ulcers, pose significant challenges to global healthcare systems due to prolonged hospitalization and increased costs attributed to susceptibility to bacterial infections. The conventional use of antibiotic-loaded and metal-impregnated dressings exacerbates concerns related to multidrug resistance and skin argyrosis. In response to these challenges, our research introduces a unique approach utilizing antibiotic-free smart hydrogel wound dressings with integrated infection eradication and diagnostic capabilities. Electrospinning stands out as a method capable of producing hydrogel nanofibrous materials possessing favorable characteristics for treating wounds and detecting infections under conditions utilizing sustainable materials. In this study, innovative dressings are fabricated through electrospinning polycaprolactone (PCL)/gelatin (GEL) hybrid hydrogel nanofibers, incorporating pDA as a cross-linker, εPL as a broad-spectrum antimicrobial agent, and anthocyanin as a pH-responsive probe. The developed dressings demonstrate exceptional antioxidant (>90% radical scavenging) and antimicrobial properties (95-100% killing). The inclusion of polyphenols/flavonoids and εPL leads to absolute bacterial eradication, and in vitro assessments using HaCaT cells indicate increased cell proliferation, decreased reactive oxygen species (ROS) production, and enhanced cell viability (100% Cell viability). The dressings display notable alterations in color that correspond to different wound conditions. Specifically, they exhibit a red/violet hue under healthy wound conditions (pH 4-6.5) and a green/blue color under unhealthy wound conditions (pH > 6.5). These distinctive color changes provide valuable insights into the versatile applications of the dressings in the care and management of wounds. Our findings suggest that these antibiotic-free smart hydrogel wound dressings hold promise as an effective and sustainable solution for chronic wounds, providing simultaneous infection control and diagnostic monitoring. This research contributes to advancing the field of wound care, offering a potential paradigm shift in the development of next-generation wound dressings.


Asunto(s)
Antiinfecciosos , Nanofibras , Nanofibras/química , Hidrogeles/farmacología , Cicatrización de Heridas , Vendajes , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antibacterianos/química
13.
NPJ Syst Biol Appl ; 10(1): 23, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431714

RESUMEN

Skin cancer and other skin-related inflammatory pathologies are rising due to heightened exposure to environmental pollutants and carcinogens. In this context, natural products and repurposed compounds hold promise as novel therapeutic and preventive agents. Strengthening the skin's antioxidant defense mechanisms is pivotal in neutralizing reactive oxygen species (ROS) and mitigating oxidative stress. Sunset Yellow (SY) exhibits immunomodulatory characteristics, evidenced by its capacity to partially inhibit the secretion of proinflammatory cytokines, regulate immune cell populations, and modulate the activation of lymphocytes. This study aimed to investigate the antioxidant and anti-genotoxic properties of SY using in-silico, in vitro, and physiochemical test systems, and to further explore its potential role in 7,12-dimethylbenz(a) anthracene (DMBA)/ 12-o-tetradecanoylphorbol-13-acetate (TPA)-induced two-stage skin carcinogenesis. In vitro experiments showed that pre-treatment of SY significantly enhanced the cell viability of HaCaT cells when exposed to tertiary-Butyl Hydrogen Peroxide (tBHP). This increase was accompanied by reduced ROS levels, restoration of mitochondrial membrane potential, and notable reduction in DNA damage in (SY + tBHP) treated cells. Mechanistic investigations using DPPH chemical antioxidant activity test and potentiometric titrations confirmed SY's antioxidant properties, with a standard reduction potential ( E o ) of 0.211 V. Remarkably, evaluating the effect of topical application of SY in DMBA/TPA-induced two-step skin carcinogenesis model revealed dose-dependent decreases in tumor latency, incidence, yield, and burden over 21-weeks. Furthermore, computational analysis and experimental validations identified GSK3ß, KEAP1 and EGFR as putative molecular targets of SY. Collectively, our findings reveal that SY enhances cellular antioxidant defenses, exhibits anti-genotoxic effects, and functions as a promising chemopreventive agent.


Asunto(s)
Antioxidantes , Compuestos Azo , Neoplasias Cutáneas , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Antioxidantes/efectos adversos , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/uso terapéutico , 9,10-Dimetil-1,2-benzantraceno/toxicidad , Neoplasias Cutáneas/inducido químicamente , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/prevención & control , Acetato de Tetradecanoilforbol/efectos adversos , Estrés Oxidativo , Quimioprevención , Carcinogénesis
14.
Ecotoxicol Environ Saf ; 89: 8-14, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23273619

RESUMEN

Arsenic, a carcinogenic metalloid severely affects plant growth in contaminated areas. Present study shows role of Trichoderma reesei NBRI 0716 (NBRI 0716) in ameliorating arsenic (As) stress on chickpea under greenhouse conditions. Arsenic stress adversely affected seed germination (25%), chlorophyll content (44%) and almost eliminated nodule formation that were significantly restored on NBRI 0716 inoculation. It also restored stem anomalies like reduced trichome turgidity and density, deformation in collenchymatous and sclerenchymatous cells induced by As stress. Semi-quantitative RT-PCR of stress responsive genes showed differential expression of genes involved in synthesis of cell wall degrading enzymes, dormancy termination and abiotic stress. Upregulation of drought responsive genes (DRE, EREBP, T6PS, MIPS, and PGIP), enhanced proline content and shrunken cortex cells in the presence of As suggests that it creates water deficiency in plants and these responses were modulated by NBRI 0716 which provides a protective role. NBRI0716 mediated production of As reductase enzyme in chickpea and thus contributed in As metabolism. The study suggests a multifarious role of NBRI0716 in mediating stress tolerance in chickpea towards As.


Asunto(s)
Arsénico/toxicidad , Cicer/efectos de los fármacos , Cicer/microbiología , Regulación de la Expresión Génica de las Plantas , Tallos de la Planta/citología , Trichoderma/fisiología , Cicer/anatomía & histología , Cicer/genética , Cicer/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Concentración de Iones de Hidrógeno , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Tallos de la Planta/efectos de los fármacos , Tallos de la Planta/microbiología , Suelo/química , Contaminantes del Suelo/toxicidad
15.
Pediatr Pulmonol ; 58(3): 738-745, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36416036

RESUMEN

INTRODUCTION: INtubate-SURfactant-Extubate (InSurE) approach is traditional method of surfactant delivery in preterm neonates with respiratory distress syndrome (RDS). Newer, less invasive surfactant administration (LISA) techniques lessen the need for mechanical ventilation and its adverse consequences. Evidence on the favorable effects of LISA can't be extrapolated from developed to developing countries. Aim of study is to compare the effectiveness of InSurE and LISA. OBJECTIVES: Primary outcome was to find need of intubation and mechanical ventilation within 72 h of birth. Neonates were followed until discharge/death for adverse events and complications. MATERIALS AND METHODS: Open-label randomized controlled trial (RCT) was conducted at tertiary neonatal intensive care unit. Preterm neonates with diagnosis of RDS were randomized in two groups (InSurE or LISA) to receive surfactant soon after birth. Nasal intermittent positive pressure ventilation (NIPPV) was used as primary mode of respiratory support. RESULTS: A total of 150 neonates were analyzed (75 in each group). Insignificant statistical difference was seen in the need for intubation and mechanical ventilation within 72 h of birth between the two groups (InSurE, 30 [40%] and LISA, 30 [40%], relative risk 1.0, 95% confidence interval 0.68-1.48). Twelve percent (n = 9, LISA group) and 14.6% (n = 11 InSurE group) had adverse events during the procedure. Also, we observed insignificant statistical difference in the rates of major complications or duration of respiratory support, hospital stay, and mortality. CONCLUSION: LISA and InSurE are equally effectiSpontaneously breathing pretermve for surfactant administration in the treatment of RDS, when NIPPV is the primary mode of respiratory support. More RCTs are required to compare the efficacy and long-term outcomes of LISA with InSurE.


Asunto(s)
Surfactantes Pulmonares , Síndrome de Dificultad Respiratoria del Recién Nacido , Recién Nacido , Humanos , Tensoactivos , Presión de las Vías Aéreas Positiva Contínua/métodos , Recien Nacido Prematuro , Síndrome de Dificultad Respiratoria del Recién Nacido/tratamiento farmacológico , Surfactantes Pulmonares/uso terapéutico , Respiración Artificial/métodos , Intubación Intratraqueal/métodos
16.
Sci Rep ; 13(1): 20856, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012260

RESUMEN

Recently, there has been considerable interest in the functions of gut microbiota in broiler chickens in relation to their use as feed additives. However, the gut-microbiota of chickens reared at different altitudes are not well documented for their potential role in adapting to prevailing conditions and functional changes. In this context, the present study investigates the functional diversity of gut-microbes in high-altitude (HACh) and low-altitude adapted chickens (LACh), assessing their substrate utilization profile through Biolog Ecoplates technology. This will help in the identification of potential microbes or their synthesized metabolites, which could be beneficial for the host or industrial applications. Results revealed that among the 31 different types of studied substrates, only polymers, carbohydrates, carboxylic acids, and amine-based substrates utilization varied significantly (p < 0.05) among the chickens reared at two different altitudes where gut-microbes of LACh utilized a broad range of substrates than the HACh. Further, diversity indices (Shannon and MacIntosh) analysis in LACh samples showed significant (p < 0.05) higher richness and evenness of microbes as compared to the HACh samples. However, no significant difference was observed in the Simpson diversity index in gut microbes of lowversus high-altitude chickens. In addition, the Principal Component Analysis elucidated variation in substrate preferences of gut-microbes, where 13 and 8 carbon substrates were found to constitute PC1 and PC2, respectively, where γ-aminobutyric acid, D-glucosaminic acid, i-erythritol and tween 40 were the most relevant substrates that had a major effect on PC1, however, alpha-ketobutyric acid and glycyl-L-glutamic acid affected PC2. Hence, this study concludes that the gut-microbes of high and low-altitudes adapted chickens use different carbon substrates so that they could play a vital role in the health and immunity of an animal host based on their geographical location. Consequently, this study substantiates the difference in the substrate utilization and functional diversity of the microbial flora in chickens reared at high and low altitudes due to altitudinal changes.


Asunto(s)
Altitud , Microbioma Gastrointestinal , Animales , Pollos , Ácido Glutámico , Carbono/análisis
17.
Plants (Basel) ; 12(4)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36840163

RESUMEN

Climate change is more likely to have a detrimental effect on the world's productive assets. Several undesirable conditions and practices, including extreme temperature, drought, and uncontrolled use of agrochemicals, result in stresses that strain agriculture. In addition, nutritional inadequacies in food crops are wreaking havoc on human health, especially in rural regions of less developed countries. This could be because plants are unable to absorb the nutrients in conventional fertilizers, or these fertilizers have an inappropriate or unbalanced nutrient composition. Chemical fertilizers have been used for centuries and have considerably increased crop yields. However, they also disrupt soil quality and structure, eventually impacting the entire ecosystem. To address the situation, it is necessary to develop advanced materials that can release nutrients to targeted points in the plant-soil environment or appropriate receptors on the leaf in the case of foliar applications. Recently, nanotechnology-based interventions have been strongly encouraged to meet the world's growing food demand and to promote food security in an environmentally friendly manner. Biological approaches for the synthesis of nanoscale agro-materials have become a promising area of research, with a wide range of product types such as nanopesticides, nanoinsecticides, nanoherbicides, nanobactericides/fungicides, bio-conjugated nanocomplexes, and nanoemulsions emerging therefrom. These materials are more sustainable and target-oriented than conventional agrochemicals. In this paper, we reviewed the literature on major abiotic and biotic stresses that are detrimental to plant growth and productivity. We comprehensively discussed the different forms of nanoscale agro-materials and provided an overview of biological approaches in nano-enabled strategies that can efficiently alleviate plant biotic and abiotic stresses while potentially enhancing the nutritional values of plants.

18.
Plant Physiol Biochem ; 197: 107637, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36933507

RESUMEN

Herein, the impact of chitosan fabricated biogenic silver nanoparticles (Ch@BSNP) has been evaluated for the protective management of bacterial leaf spot (BLS) disease in tomatoes caused by Xanthomonas campestris (NCIM5028). The Ch@BSNP originated by the Trichoderma viride (MTCC5661) derived extracellular compounds and subsequent chitosan hybridization. Spherical-shaped Ch@BSNP (30-35 nm) treated diseased plants were able to combat the biotic stress, as evidenced by the decreased elevated response of stress markers viz; anthocyanin (34.02%), proline (45.00%), flavonoids (20.26%), lipid peroxidation (10.00%), guaiacol peroxidase (36.58%), ascorbate peroxidase (41.50%), polyphenol oxidase (25.34%) and phenylalanine ammonia-lyase (2.10 fold) as compared to untreated diseased plants. Increased biochemical content specifically sugar (15.43%), phenolics (49.10%), chlorophyll, and carotenoids were measured in Ch@BSNP-treated diseased plants compared to untreated X. campestris-infested plants. The Ch@BSNP considerably reduced stress by increasing net photosynthetic rate and water use efficiency along with decreased transpiration rate and stomatal conductance in comparison to infected plants. Additionally, the expression of defense-regulatory genes viz; growth responsive (AUX, GH3, SAUR), early defense responsive (WRKYTF22, WRKY33, NOS1), defense responsive (PR1, NHO1, NPR1), hypersensitivity responsive (Pti, RbohD, OXI1) and stress hormones responsive (MYC2, JAR1, ERF1) were found to be upregulated in diseased plants while being significantly downregulated in Ch@BSNP-treated diseased plants. Furthermore, fruits obtained from pathogen-compromised plants treated with Ch@BSNP had higher levels of health-promoting compounds including lycopene and beta-carotene than infected plant fruits. This nano-enabled and environmentally safer crop protection strategy may encourage a sustainable agri-system towards the world's growing food demand and promote food security.


Asunto(s)
Quitosano , Nanopartículas del Metal , Solanum lycopersicum , Plata/química , Mecanismos de Defensa
19.
Microbiology (Reading) ; 158(Pt 2): 529-538, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22117007

RESUMEN

Lagerstroemia speciosa (Lythraceae) is a south-east Asian tree more commonly known as 'Jarul'. Research on health benefits suggests that the L. speciosa plant contains phytomolecules that may have antioxidant, anti-diabetic and anti-obesity properties. However, antimicrobial activities have not been reported for this plant. The ability of L. speciosa fruit extract (LSFE) to antagonize cell-to-cell communication, expression of virulence genes and factors, and biofilm formation was evaluated in Pseudomonas aeruginosa strain PAO1. Our results suggested that LSFE caused downregulation of quorum sensing (QS)-related genes (las and rhl) and their respective signalling molecules, N-acylhomoserine lactones, without affecting the growth of P. aeruginosa PAO1. Significant inhibition of virulence factors: LasA protease, LasB elastase, and pyoverdin production, was also recorded. Application of LSFE to P. aeruginosa PAO1 biofilms increased bacterial susceptibility to tobramycin. These data suggest a possible role for quorum-quenching mechanisms unrelated to static or cidal effects, and also suggest that L. speciosa could serve as a cost-effective source in the development of new QS-based antibacterial drugs.


Asunto(s)
Biopelículas/efectos de los fármacos , Lagerstroemia/química , Extractos Vegetales/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Percepción de Quorum/efectos de los fármacos , Factores de Virulencia/metabolismo , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Frutas/química , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiología , Factores de Virulencia/genética
20.
Microb Ecol ; 64(2): 450-60, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22419103

RESUMEN

Community level physiological profiling and pyrosequencing-based analysis of the V1-V2 16S rRNA gene region were used to characterize and compare microbial community structure, diversity, and bacterial phylogeny from soils of chemically cultivated land (CCL), organically cultivated land (OCL), and fallow grass land (FGL) for 16 years and were under three different land use types. The entire dataset comprised of 16,608 good-quality sequences (CCL, 6,379; OCL, 4,835; FGL, 5,394); among them 12,606 sequences could be classified in 15 known phylum. The most abundant phylum were Proteobacteria (29.8%), Acidobacteria (22.6%), Actinobacteria (11.1%), and Bacteroidetes (4.7%), while 24.3% of the sequences were from bacterial domain but could not be further classified to any known phylum. Proteobacteria, Bacteroidetes, and Gemmatimonadetes were found to be significantly abundant in OCL soil. On the contrary, Actinobacteria and Acidobacteria were significantly abundant in CCL and FGL, respectively. Our findings supported the view that organic compost amendment (OCL) activates diverse group of microorganisms as compared with conventionally used synthetic chemical fertilizers. Functional diversity and evenness based on carbon source utilization pattern was significantly higher in OCL as compared to CCL and FGL, suggesting an improvement in soil quality. This abundance of microbes possibly leads to the enhanced level of soil organic carbon, soil organic nitrogen, and microbial biomass in OCL and FGL soils as collated with CCL. This work increases our current understanding on the effect of long-term organic and chemical amendment applications on abundance, diversity, and composition of bacterial community inhabiting the soil for the prospects of agricultural yield and quantity of soil.


Asunto(s)
Agricultura/métodos , Bacterias/crecimiento & desarrollo , Bacterias/genética , Ecosistema , Microbiología del Suelo , Bacterias/clasificación , Monitoreo del Ambiente , Fertilizantes , Genes de ARNr , Estiércol , Filogenia , Poaceae/crecimiento & desarrollo , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA