Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 107(7-8): 2423-2436, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36811707

RESUMEN

Industrial fungi need a strong environmental stress tolerance to ensure acceptable efficiency and yields. Previous studies shed light on the important role that Aspergillus nidulans gfdB, putatively encoding a NAD+-dependent glycerol-3-phosphate dehydrogenase, plays in the oxidative and cell wall integrity stress tolerance of this filamentous fungus model organism. The insertion of A. nidulans gfdB into the genome of Aspergillus glaucus strengthened the environmental stress tolerance of this xerophilic/osmophilic fungus, which may facilitate the involvement of this fungus in various industrial and environmental biotechnological processes. On the other hand, the transfer of A. nidulans gfdB to Aspergillus wentii, another promising industrial xerophilic/osmophilic fungus, resulted only in minor and sporadic improvement in environmental stress tolerance and meanwhile partially reversed osmophily. Because A. glaucus and A. wentii are phylogenetically closely related species and both fungi lack a gfdB ortholog, these results warn us that any disturbance of the stress response system of the aspergilli may elicit rather complex and even unforeseeable, species-specific physiological changes. This should be taken into consideration in any future targeted industrial strain development projects aiming at the fortification of the general stress tolerance of these fungi. KEY POINTS: • A. wentii c' gfdB strains showed minor and sporadic stress tolerance phenotypes. • The osmophily of A. wentii significantly decreased in the c' gfdB strains. • Insertion of gfdB caused species-specific phenotypes in A. wentii and A. glaucus.


Asunto(s)
Aspergillus nidulans , Aspergillus nidulans/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/farmacología , Glicerolfosfato Deshidrogenasa/genética , Estrés Fisiológico , Fenotipo
2.
PLoS Comput Biol ; 16(5): e1007864, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32453748

RESUMEN

Interactions between disordered proteins involve a wide range of changes in the structure and dynamics of the partners involved. These changes can be classified in terms of binding modes, which include disorder-to-order (DO) transitions, when proteins fold upon binding, as well as disorder-to-disorder (DD) transitions, when the conformational heterogeneity is maintained in the bound states. Furthermore, systematic studies of these interactions are revealing that proteins may exhibit different binding modes with different partners. Proteins that exhibit this context-dependent binding can be referred to as fuzzy proteins. Here we investigate amino acid code for fuzzy binding in terms of the entropy of the probability distribution of transitions towards decreasing order. We implement these entropy calculations into the FuzPred (http://protdyn-fuzpred.org) algorithm to predict the range of context-dependent binding modes of proteins from their amino acid sequences. As we illustrate through a variety of examples, this method identifies those binding sites that are sensitive to the cellular context or post-translational modifications, and may serve as regulatory points of cellular pathways.


Asunto(s)
Sitios de Unión , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteínas/química , Algoritmos , Biología Computacional/métodos , Bases de Datos de Proteínas , Factor 2 Eucariótico de Iniciación/química , Lógica Difusa , Humanos , Proteínas Intrínsecamente Desordenadas/química , Probabilidad , Dominios Proteicos , Pliegue de Proteína , Curva ROC , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Proteína p53 Supresora de Tumor/química , eIF-2 Quinasa/química
3.
Nucleic Acids Res ; 45(D1): D228-D235, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-27794553

RESUMEN

FuzDB (http://protdyn-database.org) compiles experimentally observed fuzzy protein complexes, where intrinsic disorder (ID) is maintained upon interacting with a partner (protein, nucleic acid or small molecule) and directly impacts biological function. Entries in the database have both (i) structural evidence demonstrating the structural multiplicity or dynamic disorder of the ID region(s) in the partner bound form of the protein and (ii) in vitro or in vivo biological evidence that indicates the significance of the fuzzy region(s) in the formation, function or regulation of the assembly. Unlike the other intrinsically disordered or unfolded protein databases, FuzDB focuses on ID regions within a biological context, including higher-order assemblies and presents a detailed analysis of the structural and functional data. FuzDB also provides interpretation of experimental results to elucidate the molecular mechanisms by which fuzzy regions-classified on the basis of topology and mechanism-interfere with the structural ensembles and activity of protein assemblies. Regulatory sites generated by alternative splicing (AS) or post-translational modifications (PTMs) are also collected. By assembling all this information, FuzDB could be utilized to develop stochastic structure-function relationships for proteins and could contribute to the emergence of a new paradigm.


Asunto(s)
Biología Computacional/métodos , Bases de Datos de Proteínas , Modelos Moleculares , Complejos Multiproteicos , Proteínas/química , Proteínas/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Unión Proteica , Programas Informáticos , Relación Estructura-Actividad , Navegador Web
4.
J Basic Microbiol ; 56(7): 827-33, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26631869

RESUMEN

A group of menadione stress-responsive function-unkown genes of Aspergillus nidulans (Locus IDs ANID_03987.1, ANID_06058.1, ANID_10219.1, and ANID_10260.1) was deleted and phenotypically characterized. Importantly, comparative and phylogenetic analyses of the tested A. nidulans genes and their orthologs shed light only on the presence of a TANGO2 domain with NRDE protein motif in the translated ANID_06058.1 gene but did not reveal any recognizable protein-encoding domains in other protein sequences. The gene deletion strains were subjected to oxidative, osmotic, and metal ion stress and, surprisingly, only the ΔANID_10219.1 mutant showed an increased sensitivity to 0.12 mmol l(-1) menadione sodium bisulfite. The gene deletions affected the stress sensitivities (tolerances) irregularly, for example, some strains grew more slowly when exposed to various oxidants and/or osmotic stress generating agents, meanwhile the ΔANID_10260.1 mutant possessed a wild-type tolerance to all stressors tested. Our results are in line with earlier studies demonstrating that the deletions of stress-responsive genes do not confer necessarily any stress-sensitivity phenotypes, which can be attributed to compensatory mechanisms based on other elements of the stress response system with overlapping functions.


Asunto(s)
Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Choque Térmico/genética , Vitamina K 3/farmacología , Eliminación de Gen , Perfilación de la Expresión Génica , Presión Osmótica , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Vitamina K 3/metabolismo
5.
Microbiology (Reading) ; 159(Pt 1): 176-190, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23154970

RESUMEN

Carbon starvation is a common stress for micro-organisms both in nature and in industry. The carbon starvation stress response (CSSR) involves the regulation of several important processes including programmed cell death and reproduction of fungi, secondary metabolite production and extracellular hydrolase formation. To gain insight into the physiological events of CSSR, DNA microarray analyses supplemented with real-time RT-PCR (rRT-PCR) experiments on 99 selected genes were performed. These data demonstrated that carbon starvation induced very complex changes in the transcriptome. Several genes contributing to protein synthesis were upregulated together with genes involved in the unfolded protein stress response. The balance between biosynthesis and degradation moved towards degradation in the case of cell wall, carbohydrate, lipid and nitrogen metabolism, which was accompanied by the production of several hydrolytic enzymes and the induction of macroautophagy. These processes provide the cultures with long-term survival by liberating nutrients through degradation of the cell constituents. The induced synthesis of secondary metabolites, antifungal enzymes and proteins as well as bacterial cell wall-degrading enzymes demonstrated that carbon-starving fungi should have marked effects on the micro-organisms in their surroundings. Due to the increased production of extracellular and vacuolar enzymes during carbon starvation, the importance of the endoplasmic reticulum increased considerably.


Asunto(s)
Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Carbono/metabolismo , Regulación Fúngica de la Expresión Génica , Transcriptoma , Pared Celular/metabolismo , Redes y Vías Metabólicas/genética , Análisis por Micromatrices , Viabilidad Microbiana , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estrés Fisiológico
6.
Microbiol Spectr ; : e0028323, 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37676031

RESUMEN

Several P1B-type ATPases are important Cd2+/Cu2+ pumps in Aspergillus species, and they are tightly associated with the heavy metal stress tolerance of these ascomycetous fungi. To better understand the roles of the two P1B-type ATPases, Aspergillus nidulans CrpA Cd2+/Cu2+ pump (orthologue of the Candida albicans Crp1 Cd2+/Cu2+ pump) and Aspergillus fumigatus PcaA Cd2+ pump (orthologue of the Saccharomyces cerevisiae Pca1 Cd2+ pump), we have generated individual mutants and characterized their heavy metal susceptibilities. The deletion of CrpA in A. nidulans has led to the increased sensitivity of the fungus to stresses induced by Zn2+, Fe2+, or the combination of oxidative-stress-inducing menadione sodium bisulfite and Fe3+. Heterologous expression of A. fumigatus PcaA in the S. cerevisiae pca1 deletion mutant has resulted in enhanced tolerance of the yeast to stresses elicited by Cd2+or Zn2+ but not by Fe2+/Fe3+ or Cu2+. Mammalian host immune defense can attack microbes by secreting Zn2+ or Cu2+, and the oxidative stress induced by host immune systems can also disturb metal (Cu2+, Fe2+, and Zn2+) homeostasis in microbes. In summary, PcaA and CrpA can protect fungal cells from these complex stresses that contribute to the virulence of the pathogenic Aspergillus species. Moreover, due to their presence on the fungal cell surface, these P1B-type ATPases may serve as a novel drug target in the future. IMPORTANCE Mammalian host immune defense disrupts heavy metal homeostasis of fungal pathogens. P1B-type ATPase of Aspergillus fumigatus and Aspergillus nidulans may help to cope with this stress and serve as virulence traits. In our experiments, both A. nidulans Cd2+/Cu2+ pump CrpA and A. fumigatus Cd2+ pump PcaA protected fungal cells from toxic Zn2+, and CrpA also decreased Fe2+ susceptibility most likely indirectly. In addition, CrpA protected cells against the combined stress induced by the oxidative stressor menadione and Fe3+. Since P1B-type ATPases are present on the fungal cell surface, these proteins may serve as a novel drug target in the future.

7.
Fungal Genet Biol ; 49(9): 708-16, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22750657

RESUMEN

The genome of the filamentous fungus Aspergillus nidulans harbors the gene ppzA that codes for the catalytic subunit of protein phosphatase Z (PPZ), and the closely related opportunistic pathogen Aspergillus fumigatus encompasses a highly similar PPZ gene (phzA). When PpzA and PhzA were expressed in Saccharomyces cerevisiae or Schizosaccharomyces pombe they partially complemented the deleted phosphatases in the ppz1 or the pzh1 mutants, and they also mimicked the effect of Ppz1 overexpression in slt2 MAP kinase deficient S. cerevisiae cells. Although ppzA acted as the functional equivalent of the known PPZ enzymes its disruption in A. nidulans did not result in the expected phenotypes since it failed to affect salt tolerance or cell wall integrity. However, the inactivation of ppzA resulted in increased sensitivity to oxidizing agents like tert-butylhydroperoxide, menadione, and diamide. To demonstrate the general validity of our observations we showed that the deletion of the orthologous PPZ genes in other model organisms, such as S. cerevisiae (PPZ1) or Candida albicans (CaPPZ1) also caused oxidative stress sensitivity. Thus, our work reveals a novel function of the PPZ enzyme in A. nidulans that is conserved in very distantly related fungi.


Asunto(s)
Aspergillus nidulans/enzimología , Proteínas Fúngicas/metabolismo , Estrés Oxidativo , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Secuencia de Aminoácidos , Aspergillus nidulans/genética , Dominio Catalítico , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Expresión Génica , Datos de Secuencia Molecular , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Alineación de Secuencia
8.
Nat Commun ; 13(1): 5058, 2022 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-36030240

RESUMEN

Arabidopsis NODULIN HOMEOBOX (NDX) is a nuclear protein described as a regulator of specific euchromatic genes within transcriptionally active chromosome arms. Here we show that NDX is primarily a heterochromatin regulator that functions in pericentromeric regions to control siRNA production and non-CG methylation. Most NDX binding sites coincide with pericentromeric het-siRNA loci that mediate transposon silencing, and are antagonistic with R-loop structures that are prevalent in euchromatic chromosomal arms. Inactivation of NDX leads to differential siRNA accumulation and DNA methylation, of which CHH/CHG hypomethylation colocalizes with NDX binding sites. Hi-C analysis shows significant chromatin structural changes in the ndx mutant, with decreased intrachromosomal interactions at pericentromeres where NDX is enriched in wild-type plants, and increased interchromosomal contacts between KNOT-forming regions, similar to those observed in DNA methylation mutants. We conclude that NDX is a key regulator of heterochromatin that is functionally coupled to het-siRNA loci and non-CG DNA methylation pathways.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Metilación de ADN , Proteínas de Unión al ADN , Regulación de la Expresión Génica de las Plantas , Genes Homeobox , Heterocromatina , Proteínas de Homeodominio , Homeostasis , Proteínas de la Membrana , Proteínas de Plantas , ARN Interferente Pequeño
9.
Fungal Genet Biol ; 48(2): 92-103, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20797444

RESUMEN

Under long-term oxidative stress caused by menadione sodium bisulfite, genome-wide transcriptional and proteome-wide translational changes were compared in Aspergillus nidulans vegetative cells. The comparison of proteomic and DNA microarray expression data demonstrated that global gene expression changes recorded with either flip-flop or dendrimer cDNA labeling techniques supported proteome changes moderately with 40% and 34% coincidence coefficients, respectively. Enzyme levels in the glycolytic pathway were alternating, which was a direct consequence of fluctuating gene expression patterns. Surprisingly, enzymes in the vitamin B2 and B6 biosynthetic pathways were repressed concomitantly with the repression of some protein folding chaperones and nuclear transport elements. Under long-term oxidative stress, the peroxide-detoxifying peroxiredoxins and cytochrome c peroxidase were replaced by thioredoxin reductase, a nitroreductase and a flavohemoprotein, and protein degradation became predominant to eliminate damaged proteins.


Asunto(s)
Aspergillus nidulans/efectos de los fármacos , Oxidantes/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Vitamina K 3/metabolismo , Perfilación de la Expresión Génica , Redes y Vías Metabólicas/genética , Análisis por Micromatrices , Proteoma/análisis
10.
Comput Struct Biotechnol J ; 19: 4032-4041, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34377368

RESUMEN

Throughout evolution, DNA transposons provide a recurrent supply of genetic information to give rise to novel gene functions by fusion of their transposase domain to various domains of host-encoded proteins. One of these "domesticated", transposase-derived factors is SETMAR/Metnase which is a naturally occurring fusion protein that consists of a histone-lysine methyltransferase domain and an HsMar1 transposase. To elucidate the biological role of SETMAR, it is crucial to identify genomic targets to which SETMAR specifically binds and link these sites to the regulation of gene expression. Herein, we mapped the genomic landscape of SETMAR binding in a near-haploid human leukemia cell line (HAP1) in order to identify on-target and off-target binding sites at high resolution and to elucidate their role in terms of gene expression. Our analysis revealed a perfect correlation between SETMAR and inverted terminal repeats (ITRs) of HsMar1 transposon remnants, which are considered as natural target sites for SETMAR binding. However, we did not detect any untargeted events at non-ITR sequences, calling into question previously proposed off-target binding sites. We identified sequence fidelity of the ITR motif as a key factor for determining the binding affinity of SETMAR for chromosomes, as higher conservation of ITR sequences resulted in increased affinity for chromatin and stronger repression of SETMAR-bound gene loci. These associations highlight how SETMAR's chromatin binding fine-tune gene regulatory networks in human tumour cells.

11.
Dev Genes Evol ; 220(3-4): 123-8, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20632030

RESUMEN

In the genome of Drosophila melanogaster, there are 19 phosphoprotein phosphatase (PPP) catalytic subunit coding genes. Seven of the novel members of the gene family turned out to be Drosophila-specific. The expression and evolution of these genes was investigated in the present study. CG11597 is a recently evolved gene that is expressed during all stages of morphogenesis in D. melanogaster. In contrast, the transcription of PpD5, PpD6, Pp1-Y1, and Pp1-Y2 genes is restricted to the pupa and imago developmental stages and to the testis of the males, just as that of the previously characterized PpY-55A and PpN58A. With the exception of the Y-localized Pp1-Y1 and Pp1-Y2, the testis-specific phosphatase genes are expressed in X/0 males, while none of them are expressed in XX/Y females. The mRNA of PpD5, Pp1-Y1, and PpY-55A were detected in the developing cysts by in situ hybridization, in contrast with the PpD6 transcript that was found in the distal ends of elongating spermatids. The latter localization suggests post-meiotic expression. The comparison of PPP genes in five Drosophila species revealed that the sequence of the six testis-specific phosphatases changed more rapidly than that of the housekeeping phosphatases. Our results support the "faster male" hypothesis. On the other hand, the male-biased expression of the six genes remained conserved during evolution despite the fact that Pp1-Y1, Pp1-Y2, and PpD6 moved from autosomes to the Y chromosome. Interestingly, the PpD6 gene was found to be Y-linked only in Drosophila ananassae.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/genética , Perfilación de la Expresión Génica , Fosfoproteínas Fosfatasas/genética , Animales , Cromosomas de Insectos/genética , Drosophila/clasificación , Drosophila/crecimiento & desarrollo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Evolución Molecular , Femenino , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Hibridación in Situ , Isoenzimas/genética , Masculino , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores Sexuales , Especificidad de la Especie , Testículo/crecimiento & desarrollo , Testículo/metabolismo , Cromosoma Y/genética
12.
Mol Genet Genomics ; 283(3): 289-303, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20131067

RESUMEN

The aim of the study was to demonstrate that the bZIP-type transcription factor AtfA regulates different types of stress responses in Aspergillus nidulans similarly to Atf1, the orthologous 'all-purpose' transcription factor of Schizosaccharomyces pombe. Heterologous expression of atfA in a S. pombe Deltaatf1 mutant restored the osmotic stress tolerance of fission yeast in surface cultures to the same level as recorded in complementation studies with the atf1 gene, and a partial complementation of the osmotic and oxidative-stress-sensitive phenotypes was also achieved in submerged cultures. AtfA is therefore a true functional ortholog of fission yeast's Atf1. As demonstrated by RT-PCR experiments, elements of both oxidative (e.g. catalase B) and osmotic (e.g. glycerol-3-phosphate dehydrogenase B) stress defense systems were transcriptionally regulated by AtfA in a stress-type-specific manner. Deletion of atfA resulted in oxidative-stress-sensitive phenotypes while the high-osmolarity stress sensitivity of the fungus was not affected significantly. In A. nidulans, the glutathione/glutathione disulfide redox status of the cells as well as apoptotic cell death and autolysis seemed to be controlled by regulatory elements other than AtfA. In conclusion, the orchestrations of stress responses in the aspergilli and in fission yeast share several common features, but further studies are needed to answer the important question of whether a fission yeast-like core environmental stress response also operates in the euascomycete genus Aspergillus.


Asunto(s)
Factores de Transcripción Activadores/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción Activadores/genética , Aspergillus nidulans/enzimología , Secuencia de Bases , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genotipo , Glutatión/metabolismo , Disulfuro de Glutatión/metabolismo , Cinética , Oxidación-Reducción , Estrés Oxidativo/genética , Fenotipo , Proteínas/genética , Proteínas/metabolismo , ARN de Hongos/genética , ARN Mensajero/genética , ADN Polimerasa Dirigida por ARN/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
13.
J Basic Microbiol ; 50 Suppl 1: S74-82, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20473966

RESUMEN

The gene of protein phosphatase Z1 (CaPPZ1) that codes a fungus specific regulatory enzyme was investigated in Candida albicans. After cloning and sequencing CaPPZ1 we revealed the heterozygous nature of the ATCC 10231 reference strain, and identified two new alleles termed CaPPZ1-2 and CaPPZ1-3. The genetic polymorphism in CaPPZ1 was extended by finding a fourth allele CaPPZ1-4 in a clinical isolate. Single nucleotide replacements and short in/del mutations were identified in the gene, some of which resulted in amino acid changes in the protein. The analysis of the hypervariable 3'-noncoding gene region in 27 DNA sequences obtained from reference strains and clinical samples confirmed the presence of four distinct DNA sequence-groups that correspond to the four main alleles of CaPPZ1. In addition to the allelic combinations, we detected individual mutations elevating genetic variability of the opportunistic pathogen. We utilized the hypervariable gene region for genotyping C. albicans in clinical isolates by sequencing the cloned amplified region, by direct sequencing of the PCR products, or by RFLP analysis. The comparison of the genotypes of the strains originating from different body parts of the same patient proved to be useful in delineating the origin of the infection.


Asunto(s)
Candida albicans/enzimología , Proteínas Fúngicas/genética , Fosfoproteínas Fosfatasas/genética , Polimorfismo Genético , Adulto , Anciano , Anciano de 80 o más Años , Alelos , Secuencia de Bases , Candida albicans/genética , Niño , Preescolar , ADN de Hongos/genética , Femenino , Genes Fúngicos , Variación Genética , Genotipo , Haplotipos , Humanos , Mutación INDEL , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
14.
Front Pharmacol ; 11: 569955, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33643029

RESUMEN

A serious adverse effect of cancer therapies is cardiovascular toxicity, which significantly limits the widespread use of antineoplastic agents. The promising new field of cardio-oncology offers the identification of potent anti-cancer therapeutics that effectively inhibit cancer cell proliferation without causing cardiotoxicity. Future introduction of recently identified cardio-safe compounds into clinical practice (including ERK dimerization inhibitors or BAX allosteric inhibitors) is expected to help oncologists avoid unwanted cardiological complications associated with therapeutic interventions.

15.
J Mol Biol ; 432(7): 2289-2303, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32112804

RESUMEN

It is becoming increasingly recognised that disordered proteins may be fuzzy, in that they can exhibit a wide variety of binding modes. In addition to the well-known process of folding upon binding (disorder-to-order transition), many examples are emerging of interacting proteins that remain disordered in their bound states (disorder-to-disorder transitions). Furthermore, disordered proteins may populate ordered and disordered states to different extents depending on their partners (context-dependent binding). Here we assemble three datasets comprising disorder-to-order, context-dependent, and disorder-to-disorder transitions of 828 protein regions represented in 2157 complexes and elucidate the sequence-determinants of the different interaction modes. We found that fuzzy interactions originate from local sequence compositions that promote the sampling of a wide range of different structures. Based on this observation, we developed the FuzPred method (http://protdyn-fuzpred.org) of predicting the binding modes of disordered proteins based on their amino acid sequences, without specifying their partners. We thus illustrate how the amino acid sequences of proteins can encode a wide range of conformational changes upon binding, including transitions from disordered to ordered and from disordered to disordered states.


Asunto(s)
Bases de Datos de Proteínas , Lógica Difusa , Proteínas Intrínsecamente Desordenadas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Análisis de Secuencia de Proteína/métodos , Algoritmos , Secuencia de Aminoácidos , Humanos , Proteínas Intrínsecamente Desordenadas/química , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos , Pliegue de Proteína , Homología de Secuencia
16.
Life (Basel) ; 10(12)2020 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-33352712

RESUMEN

The polyphyletic group of black fungi within the Ascomycota (Arthoniomycetes, Dothideomycetes, and Eurotiomycetes) is ubiquitous in natural and anthropogenic habitats. Partly because of their dark, melanin-based pigmentation, black fungi are resistant to stresses including UV- and ionizing-radiation, heat and desiccation, toxic metals, and organic pollutants. Consequently, they are amongst the most stunning extremophiles and poly-extreme-tolerant organisms on Earth. Even though ca. 60 black fungal genomes have been sequenced to date, [mostly in the family Herpotrichiellaceae (Eurotiomycetes)], the class Dothideomycetes that hosts the largest majority of extremophiles has only been sparsely sampled. By sequencing up to 92 species that will become reference genomes, the "Shed light in The daRk lineagES of the fungal tree of life" (STRES) project will cover a broad collection of black fungal diversity spread throughout the Fungal Tree of Life. Interestingly, the STRES project will focus on mostly unsampled genera that display different ecologies and life-styles (e.g., ant- and lichen-associated fungi, rock-inhabiting fungi, etc.). With a resequencing strategy of 10- to 15-fold depth coverage of up to ~550 strains, numerous new reference genomes will be established. To identify metabolites and functional processes, these new genomic resources will be enriched with metabolomics analyses coupled with transcriptomics experiments on selected species under various stress conditions (salinity, dryness, UV radiation, oligotrophy). The data acquired will serve as a reference and foundation for establishing an encyclopedic database for fungal metagenomics as well as the biology, evolution, and ecology of the fungi in extreme environments.

17.
Fungal Genet Biol ; 46 Suppl 1: S105-20, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18703157

RESUMEN

Stress-response proteins of Aspergillus nidulans, Aspergillus clavatus, Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Aspergillus oryzae, Aspergillus terreus and Neosartorya fischeri (3908 in total) were annotated and grouped according to stress types (http://193.6.155.82/AspergillusStress/). All genomes harboured elements of the SskA-HogA/SakA stress signalling pathway. There are accumulating data pointing at the importance of SskA-HogA/SakA signalling in different types of stress-responses in the aspergilli and, in this regard, these filamentous fungi are closer to fission yeast than to budding yeast. The abundance of annotated stress sensing histidine kinases and transcriptional regulators in each Aspergillus species indicates that the applicability of yeast-based models to fully describe and explain the stress-responses of these fungi is limited. Most excitingly, putative orthologues of both Saccharomyces cerevisiae Msn2p/Msn4p C2H2 zinc finger-type and Schizosaccharomyces pombe Atf1 bZip-type 'general stress' transcription factors were annotated in the aspergilli, foreshadowing complex and robust stress defence systems in these euascomycetes.


Asunto(s)
Aspergillus/genética , Proteínas Fúngicas/genética , Genes Fúngicos , Genoma Fúngico , Estrés Fisiológico , Aspergillus/clasificación , Aspergillus/fisiología , Biología Computacional , Genómica , Transducción de Señal
18.
Fungal Genet Biol ; 46 Suppl 1: S2-13, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19146970

RESUMEN

The identification and annotation of protein-coding genes is one of the primary goals of whole-genome sequencing projects, and the accuracy of predicting the primary protein products of gene expression is vital to the interpretation of the available data and the design of downstream functional applications. Nevertheless, the comprehensive annotation of eukaryotic genomes remains a considerable challenge. Many genomes submitted to public databases, including those of major model organisms, contain significant numbers of wrong and incomplete gene predictions. We present a community-based reannotation of the Aspergillus nidulans genome with the primary goal of increasing the number and quality of protein functional assignments through the careful review of experts in the field of fungal biology.


Asunto(s)
Aspergillus nidulans/genética , Proteínas Fúngicas/genética , Genes Fúngicos , Genoma Fúngico , Genómica , Aspergillus nidulans/fisiología
19.
Trends Plant Sci ; 12(4): 169-76, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17368080

RESUMEN

Serine/threonine-specific phosphoprotein phosphatases (PPPs) are ubiquitous enzymes in all eukaryotes, but their regulatory functions are largely unknown in higher plants. The Arabidopsis genome encodes 26 PPP catalytic subunits related to type 1, type 2A and so-called novel phosphatases, including four plant-specific enzymes carrying large N-terminal kelch-domains, but no apparent homologue of the PP2B family. The catalytic subunits of PPPs associate with regulatory protein partners that target them to well defined cellular locations and modulate their activity. Recent studies of phosphatase partners and their interactions have directed attention again to functional dissection of plant PPP families, and highlight their intriguing roles in the regulation of metabolism, cell cycle and development, as well as their roles in light, stress and hormonal signalling.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/enzimología , Modelos Biológicos , Fosfoproteínas Fosfatasas/fisiología , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/clasificación , Proteínas Nucleares/química , Proteínas Nucleares/fisiología , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/clasificación , Filogenia , Estructura Terciaria de Proteína , Subunidades de Proteína/metabolismo , Subunidades de Proteína/fisiología
20.
FEBS Lett ; 591(17): 2682-2695, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28762260

RESUMEN

Proteins may undergo adaptive structural transitions to accommodate to their cellular milieu and respond to external signals. Modulation of conformational ensembles can rewire the intra- or intermolecular interaction networks and shift between different functional states. Adaptive conformational transitions are associated with protein fuzziness, which enables (a) rewiring interaction networks via alternative motifs, (b) new functional features via allosteric motifs, (c) functional switches upon post-translational modifications, or (d) regulation of higher-order organizations. We propose that all these context-dependent functional changes are intertwined with structural multiplicity or dynamic disorder in protein assemblies and can only be described by stochastic structure-function relationships.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Regulación Alostérica , Animales , Humanos , Unión Proteica , Procesamiento Proteico-Postraduccional , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA