Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Biol Macromol ; 276(Pt 2): 134061, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39043289

RESUMEN

The conversion of lignin into bioactive compounds through selective organic synthesis methods represents a promising frontier in the pursuit of sustainable raw materials and green chemistry. This review explores the versatility of lignin-derived bioactive compounds, ranging from their application in drug discovery to their role in the development of biodegradable materials. Despite notable advancements, the synthesis routes and yields of highly bioactive molecules from lignin still require further exploration and improvement. This review provides an in-depth examination of the progress made in understanding the complex structure of lignin and developing innovative approaches to exploit its potential. Specifically, the types of lignins covered include softwood Kraft lignin, hardwood organosolv lignin, and soda lignin. This work is divided into three parts: first, the transformation of lignin into bioactive molecules with chemically active centres and functionalised hydroxyl groups through depolymerisation; second, kinetic modelling techniques essential for understanding the chemical kinetics of lignin and enabling significant scaling up in the conversion of organic molecules; third, efficient catalytic pathways for synthesising molecules with anticancer and antibacterial properties. In conclusion, this comprehensive review spurs further investigations into lignin-derived bioactive compounds, their applications, and the advancement of sustainable processes.


Asunto(s)
Lignina , Lignina/química , Antineoplásicos/química , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Técnicas de Química Sintética , Cinética , Polimerizacion , Humanos
2.
RSC Adv ; 14(11): 7699-7709, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38444968

RESUMEN

The application of novel one-dimensional (1D) architectures in the field of energy storage has fascinated researchers for a long time. The fast-paced technological advancements require reliable rapid synthesis techniques for the development of various Multi-metal oxide (MMO) nanostructures. For the first time, we report the synthesis of a single-phase hierarchical one-dimensional (1D) branched BiVO4-Reduced Graphene Oxide (BVONB/RGO) nanocomposite with different weight percent variations of RGO starting from 6, 12, 24, and 26 wt% using the supercritical water method (SCW). The affirmation of the sample characteristics is done through various nano-characterization tools that help in establishing the monoclinic crystal structure, and nano branch morphology along with its physical, and thermal characteristics. Further, the electrochemical behavior evaluations of the fabricated coin cells provide insights into the well-known superior initial cycle capacity of around 810 mA h g-1, showing the superior ability of BVONB structures in storing lithium-ions (Li-ions). Meanwhile, an improved cyclic performance of the pure BVONB/RGO with 260 mA h g-1 is evident after 50 cycles. Finally, the reported rapid single-pot SCW approach has delivered promising results in establishing a material process technique for multimetal oxides and their RGO nanocomposites successfully.

3.
RSC Adv ; 12(43): 27793-27808, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36320253

RESUMEN

Thiosemicarbazone-linked 3-acetylpyridine (T3AP), was synthesized and tested on copper strips in hydrochloric acid. Gravimetric measurements and electrochemical impedance spectroscopy were used to investigate the optimized inhibitory behavior of T3AP using the response surface methodology (RSM), with the optimized result obtained using a temperature of 42.90 °C, acid concentration of 2.38 M, inhibitor concentration of 3.80 mM, and time of 18.97 h, with inhibition efficiency up to approximately 93%. Validation of the experimental and predicted RSM showed that no significant difference in the inhibition efficiency with the confidence level value up to 97% was obtained. The isotherm study shows that T3AP obeys the Langmuir isotherm adsorption model, with physisorption and chemisorption adsorption mechanisms. The effectiveness of inhibitor performance of T3AP can be visually observed using scanning electron microscopy and X-ray photoelectron spectroscopy. The characterization revealed that the reactive S and N atoms in the T3AP inhibitor form strong chemical adsorption through N-Cu and Cu-S bonds on the copper surface. Computational analysis was also carried out, and we found that the stable energy gap between the occupied and unoccupied molecular orbitals (4.6891 eV) and high binding energy (540.962 kJ mol-1) adsorption from molecular dynamics were in agreement with the experimental findings.

4.
Int J Biol Macromol ; 198: 147-156, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34971642

RESUMEN

This article demonstrates the development of nanofibrous cloths by electrospinning of renewable materials, i.e., curcumin-loaded 90% cellulose acetate (CA)/10% poly(ε-caprolactone) (PCL), for applications in regenerative medicine. The CA is derived from the biomass waste of the oil palm plantation (empty fruit bunch). The nanofiber scaffolds are characterized for the fiber morphology, microstructure, thermal properties, and wettability. The optimized smooth and bead-free electrospun fiber cloth contains 90% CA and 10% PCL in two curcumin compositions (0.5 and 1 wt%). The role of curcumin is shown to be two-fold: the first is its function as a drug and the second is its role in lowering the water contact angle and increasing the hydrophilicity. The hydrophilicity enhancements are related to the hydrogen bonding between the components. The enhanced hydrophilicity contributed to improve the swelling behavior of the scaffolds; the CA/PCL/Cur (0.5%) and the CA/PCL/Cur (1.0%) showed swelling of ~700 and 950%, respectively, in phosphate-buffered saline (PBS). The drug-release studies revealed the highest cumulative drug release of 60% and 78% for CA/PCL/Cur (0.5%) and CA/PCL/Cur (1.0%) nanofibers, respectively. The in-vitro studies showed that CA/PCL/Cur (0.5 wt%) and CA/PCL/Cur (1.0 wt%) nanofiber scaffolds facilitate a higher proliferation and expression of actin in fibroblasts than those scaffolds without curcumin for wound healing applications.


Asunto(s)
Nanofibras
5.
J Colloid Interface Sci ; 562: 567-577, 2020 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-31780115

RESUMEN

In an effort to minimize the usage of non-renewable materials and to enhance the functionality of the renewable materials, we have developed thin metal oxide coated porous carbon derived from a highly abundant non-edible bio resource, i.e., palm kernel shell, using a one-step activation-coating procedure and demonstrated their superiority as a supercapacitive energy storage electrode. In a typical experiment, an optimized composition contained ~10 wt% of Mn2O3 on activated carbon (AC); a supercapacitor electrode fabricated using this electrode showed higher rate capability and more than twice specific capacitance than pure carbon electrode and could be cycled over 5000 cycles without any appreciable capacity loss in 1 M Na2SO4 electrolyte. A symmetric supercapacitor prototype developed using the optimum electrode showed nearly four times higher energy density than the pure carbon owing to the enhancements in voltage window and capacitance. A lithium ion capacitor fabricated in half-cell configuration using 1 M LiPF6 electrolyte showed larger voltage window, superior capacitance and rate capability in the ~10 wt% Mn2O3 @AC than the pure analogue. These results demonstrate that the current protocol allows fabrication of superior charge storing electrodes using renewable materials functionalized by minimum quantity of earthborn materials.

6.
ACS Appl Mater Interfaces ; 9(12): 10730-10742, 2017 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-28266837

RESUMEN

A one-dimensional morphology comprising nanograins of two metal oxides, one with higher electrical conductivity (CuO) and the other with higher charge storability (Co3O4), is developed by electrospinning technique. The CuO-Co3O4 nanocomposite nanowires thus formed show high specific capacitance, high rate capability, and high cycling stability compared to their single-component nanowire counterparts when used as a supercapacitor electrode. Practical symmetric (SSCs) and asymmetric (ASCs) supercapacitors are fabricated using commercial activated carbon, CuO, Co3O4, and CuO-Co3O4 composite nanowires, and their properties are compared. A high energy density of ∼44 Wh kg-1 at a power density of 14 kW kg-1 is achieved in CuO-Co3O4 ASCs employing aqueous alkaline electrolytes, enabling them to store high energy at a faster rate. The current methodology of hybrid nanowires of various functional materials could be applied to extend the performance limit of diverse electrical and electrochemical devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA