Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
RNA ; 26(1): 58-68, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31658992

RESUMEN

In response to foreign RNA, cellular antiviral mechanisms stimulate high expression of interferon-induced proteins with tetratricopeptide repeats (IFITs). Two members of the IFIT protein family, IFIT1 and IFIT5, are capable of binding the very terminal 5' end of mRNA. In eukaryotes, these mRNA termini contain a cap structure (m7GpppN, cap 0) that is often subjected to further modifications. Here, we performed a thorough examination of IFIT1 and IFIT5 binding to a wide spectrum of differently capped as well as fully uncapped mRNAs. The kinetic analysis of IFIT1 and IFIT5 interactions with mRNA ligands indicates that the cap structure modifications considerably influence the stability of IFIT1/RNA complexes. The most stable complexes were formed between IFIT1 and GpppG/A- and m7GpppG/A-RNAs. Unexpectedly, we found that NAD+- and NADH-capped RNAs associate with IFIT5 with kinetic parameters comparable to pppG-RNA. Finally, we measured interactions of IFIT1 with mRNAs bearing modified synthetic cap analogs that start to become the important tools in biotechnological and medicinal research. We found that incorporation of modified cap analogs to the RNA protects the latter, to a certain degree, from the translational inhibition caused by IFIT1 protein.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Neoplasias/metabolismo , Caperuzas de ARN/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Humanos , Cinética , NAD/genética , Proteínas de Neoplasias/genética , Unión Proteica , Análogos de Caperuza de ARN , Proteínas de Unión al ARN/genética
2.
Biochem Biophys Res Commun ; 533(3): 391-396, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-32962861

RESUMEN

The interferon-induced proteins with tetratricopeptide repeats (IFITs) are a family of RNA-binding proteins that are very highly expressed during antiviral response of immune system. IFIT proteins recognize and tightly bind foreign RNA particles. These are primarily viral RNAs ended with triphosphate at the 5' or lacking methylation of the first cap-proximal nucleotide but also in vitro transcribed RNA synthesized in the laboratory. Recognition of RNA by IFIT proteins leads to the formation of stable RNA/IFIT complexes and translational shut off of non-self transcripts. Here, we present a fluorescent-based assay to study the interaction between RNA molecules and IFIT family proteins. We have particularly focused on two representatives of this family: IFIT1 and IFIT5. We found a probe that competitively with RNA binds the positively charged tunnel in these IFIT proteins. The use of this probe for IFIT titration allowed us to evaluate the differences in binding affinities of mRNAs with different variants of 5' ends.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Naftalenosulfonatos de Anilina/química , Bioensayo , Colorantes Fluorescentes/química , Proteínas de Neoplasias/química , Proteínas de Unión a Caperuzas de ARN/química , Caperuzas de ARN/química , Proteínas de Unión al ARN/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sitios de Unión , Unión Competitiva , Humanos , Enlace de Hidrógeno , Cinética , Simulación del Acoplamiento Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Unión Proteica , Conformación Proteica , Análogos de Caperuza de ARN/química , Análogos de Caperuza de ARN/metabolismo , Proteínas de Unión a Caperuzas de ARN/genética , Proteínas de Unión a Caperuzas de ARN/metabolismo , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Espectrometría de Fluorescencia , Electricidad Estática , Termodinámica
3.
Int J Mol Sci ; 21(24)2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33352981

RESUMEN

Many peptides interact with biological membranes, but elucidating these interactions is challenging because cellular membranes are complex and peptides are structurally flexible. To contribute to understanding how the membrane-active peptides behave near the membranes, we investigated peptide structural changes in different lipid surroundings. We focused on two antimicrobial peptides, anoplin and W-MreB1-9, and one cell-penetrating peptide, (KFF)3K. Firstly, by using circular dichroism spectroscopy, we determined the secondary structures of these peptides when interacting with micelles, liposomes, E. coli lipopolysaccharides, and live E. coli bacteria. The peptides were disordered in the buffer, but anoplin and W-MreB1-9 displayed lipid-induced helicity. Yet, structural changes of the peptide depended on the composition and concentration of the membranes. Secondly, we quantified the destructive activity of peptides against liposomes by monitoring the release of a fluorescent dye (calcein) from the liposomes treated with peptides. We observed that only for anoplin and W-MreB1-9 calcein leakage from liposomes depended on the peptide concentration. Thirdly, bacterial growth inhibition assays showed that peptide conformational changes, evoked by the lipid environments, do not directly correlate with the antimicrobial activity of the peptides. However, understanding the relation between peptide structural properties, mechanisms of membrane disruption, and their biological activities can guide the design of membrane-active peptides.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Péptidos de Penetración Celular/química , Proteínas de Escherichia coli/química , Péptidos/química , Venenos de Avispas/química , Secuencia de Aminoácidos , Péptidos Catiónicos Antimicrobianos/farmacología , Membrana Celular/química , Péptidos de Penetración Celular/síntesis química , Péptidos de Penetración Celular/aislamiento & purificación , Dicroismo Circular , Membrana Dobles de Lípidos/química , Péptidos/síntesis química , Péptidos/aislamiento & purificación , Estructura Secundaria de Proteína , Venenos de Avispas/farmacología
4.
Molecules ; 25(3)2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-32012929

RESUMEN

Antibiotic resistance is an escalating, worldwide problem. Due to excessive use of antibiotics, multidrug-resistant bacteria have become a serious threat and a major global healthcare problem of the 21st century. This fact creates an urgent need for new and effective antimicrobials. The common strategies for antibiotic discovery are based on either modifying existing antibiotics or screening compound libraries, but these strategies have not been successful in recent decades. An alternative approach could be to use gene-specific oligonucleotides, such as peptide nucleic acid (PNA) oligomers, that can specifically target any single pathogen. This approach broadens the range of potential targets to any gene with a known sequence in any bacterium, and could significantly reduce the time required to discover new antimicrobials or their redesign, if resistance arises. We review the potential of PNA as an antibacterial molecule. First, we describe the physicochemical properties of PNA and modifications of the PNA backbone and nucleobases. Second, we review the carriers used to transport PNA to bacterial cells. Furthermore, we discuss the PNA targets in antibacterial studies focusing on antisense PNA targeting bacterial mRNA and rRNA.


Asunto(s)
Antibacterianos/farmacología , Ácidos Nucleicos de Péptidos/farmacología , Antibacterianos/administración & dosificación , Antibacterianos/química , Bacterias/efectos de los fármacos , Resistencia a Antineoplásicos , Humanos , Pruebas de Sensibilidad Microbiana , Conformación de Ácido Nucleico , Ácidos Nucleicos/química , Ácidos Nucleicos de Péptidos/administración & dosificación , Ácidos Nucleicos de Péptidos/química
5.
Sci Rep ; 13(1): 14826, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684254

RESUMEN

Given the widespread demand for novel antibacterial agents, we modified a cell-penetrating peptide (KFF)3K to transform it into an antibacterial peptide. Namely, we inserted a hydrocarbon staple into the (KFF)3K sequence to induce and stabilize its membrane-active secondary structure. The staples were introduced at two positions, (KFF)3K[5-9] and (KFF)3K[2-6], to retain the initial amphipathic character of the unstapled peptide. The stapled analogues are protease resistant contrary to (KFF)3K; 90% of the stapled (KFF)3K[5-9] peptide remained undigested after incubation in chymotrypsin solution. The stapled peptides showed antibacterial activity (with minimal inhibitory concentrations in the range of 2-16 µM) against various Gram-positive and Gram-negative strains, contrary to unmodified (KFF)3K, which had no antibacterial effect against any strain at concentrations up to 32 µM. Also, both stapled peptides adopted an α-helical structure in the buffer and micellar environment, contrary to a mostly undefined structure of the unstapled (KFF)3K in the buffer. We found that the antibacterial activity of (KFF)3K analogues is related to their disruptive effect on cell membranes and we showed that by stapling this cell-penetrating peptide, we can induce its antibacterial character.


Asunto(s)
Péptidos de Penetración Celular , Péptidos de Penetración Celular/farmacología , Antibacterianos/farmacología , Membrana Celular , Quimotripsina , Endopeptidasas
6.
Front Microbiol ; 12: 772038, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34966367

RESUMEN

Anoplin is a linear 10-amino acid amphipathic peptide (Gly-Leu-Leu-Lys-Arg-Ile-Lys-Thr-Leu-Leu-NH2 ) derived from the venom sac of the solitary wasp. It has broad antimicrobial activity, including an antibacterial one. However, the inhibition of bacterial growth requires several dozen micromolar concentrations of this peptide. Anoplin is positively charged and directly interacts with anionic biological membranes forming an α-helix that disrupts the lipid bilayer. To improve the bactericidal properties of anoplin by stabilizing its helical structure, we designed and synthesized its analogs with hydrocarbon staples. The staple was introduced at two locations resulting in different charges and amphipathicity of the analogs. Circular dichroism studies showed that all modified anoplins adopted an α-helical conformation, both in the buffer and in the presence of membrane mimics. As the helicity of the stapled anoplins increased, their stability in trypsin solution improved. Using the propidium iodide uptake assay in Escherichia coli and Staphylococcus aureus, we confirmed the bacterial membrane disruption by the stapled anoplins. Next, we tested the antimicrobial activity of peptides on a range of Gram-negative and Gram-positive bacteria. Finally, we evaluated peptide hemolytic activity on sheep erythrocytes and cytotoxicity on human embryonic kidney 293 cells. All analogs showed higher antimicrobial activity than unmodified anoplin. Depending on the position of the staple, the peptides were more effective either against Gram-negative or Gram-positive bacteria. Anoplin[5-9], with a lower positive charge and increased hydrophobicity, had higher activity against Gram-positive bacteria but also showed hemolytic and destructive effects on eukaryotic cells. Contrary, anoplin[2-6] with a similar charge and amphipathicity as natural anoplin effectively killed Gram-negative bacteria, also pathogenic drug-resistant strains, without being hemolytic and toxic to eukaryotic cells. Our results showed that anoplin charge, amphipathicity, and location of hydrophobic residues affect the peptide destructive activity on the cell wall, and thus, its antibacterial activity. This means that by manipulating the charge and position of the staple in the sequence, one can manipulate the antimicrobial activity.

7.
J Phys Chem B ; 123(39): 8168-8177, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31491077

RESUMEN

Peptide nucleic acid (PNA) is a neutral nucleic acid analogue that base pairs with itself and natural nucleic acids. PNA-nucleic acid complexes are more thermally stable than the corresponding complexes of natural nucleic acids. In addition, PNA is biostable and thus used in many antisense and antigene applications to block functional RNA or DNA via sequence-specific interactions. We have recently developed force field parameters for molecular dynamics (MD) simulations of PNA and PNA-involving duplexes with natural nucleic acids. In this work, we provide the first application of this force field to biologically relevant PNA sequences and their complexes with RNA. We investigated thermal stabilities of short PNA-PNA, PNA-RNA, and RNA-RNA duplexes using UV-monitored thermal denaturation experiments and MD simulations at ambient and elevated temperatures. The simulations show a two-state melting transition and reproduce the thermal stability from melting experiments, with PNA-PNA being the most and RNA-RNA the least stable. The PNA-PNA duplex also displays the highest activation energy for melting. The atomistic details of unfolding of PNA duplexes suggest that all PNA-PNA bases melt concomitantly, whereas the RNA-RNA and PNA-RNA are destabilized from the termini toward the central part of the duplexes.


Asunto(s)
Simulación de Dinámica Molecular , Ácidos Nucleicos de Péptidos/química , Temperatura , Emparejamiento Base , Secuencia de Bases , Ácidos Nucleicos de Péptidos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA