Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Physiol Rev ; 103(1): 717-785, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35901239

RESUMEN

Proteases are signaling molecules that specifically control cellular functions by cleaving protease-activated receptors (PARs). The four known PARs are members of the large family of G protein-coupled receptors. These transmembrane receptors control most physiological and pathological processes and are the target of a large proportion of therapeutic drugs. Signaling proteases include enzymes from the circulation; from immune, inflammatory epithelial, and cancer cells; as well as from commensal and pathogenic bacteria. Advances in our understanding of the structure and function of PARs provide insights into how diverse proteases activate these receptors to regulate physiological and pathological processes in most tissues and organ systems. The realization that proteases and PARs are key mediators of disease, coupled with advances in understanding the atomic level structure of PARs and their mechanisms of signaling in subcellular microdomains, has spurred the development of antagonists, some of which have advanced to the clinic. Herein we review the discovery, structure, and function of this receptor system, highlight the contribution of PARs to homeostatic control, and discuss the potential of PAR antagonists for the treatment of major diseases.


Asunto(s)
Receptores Proteinasa-Activados , Transducción de Señal , Humanos , Transducción de Señal/fisiología , Receptores Acoplados a Proteínas G , Péptido Hidrolasas/metabolismo , Homeostasis
2.
Mol Cell Proteomics ; 23(2): 100714, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199506

RESUMEN

Aberrant levels of the asparaginyl endopeptidase legumain have been linked to inflammation, neurodegeneration, and cancer, yet our understanding of this protease is incomplete. Systematic attempts to identify legumain substrates have been previously confined to in vitro studies, which fail to mirror physiological conditions and obscure biologically relevant cleavage events. Using high-field asymmetric waveform ion mobility spectrometry (FAIMS), we developed a streamlined approach for proteome and N-terminome analyses without the need for N-termini enrichment. Compared to unfractionated proteomic analysis, we demonstrate FAIMS fractionation improves N-termini identification by >2.5 fold, resulting in the identification of >2882 unique N-termini from limited sample amounts. In murine spleens, this approach identifies 6366 proteins and 2528 unique N-termini, with 235 cleavage events enriched in WT compared to legumain-deficient spleens. Among these, 119 neo-N-termini arose from asparaginyl endopeptidase activities, representing novel putative physiological legumain substrates. The direct cleavage of selected substrates by legumain was confirmed using in vitro assays, providing support for the existence of physiologically relevant extra-lysosomal legumain activity. Combined, these data shed critical light on the functions of legumain and demonstrate the utility of FAIMS as an accessible method to improve depth and quality of N-terminomics studies.


Asunto(s)
Proteómica , Bazo , Animales , Ratones , Proteómica/métodos , Bazo/química , Bazo/metabolismo , Cisteína Endopeptidasas/metabolismo , Proteoma/análisis
3.
Immunol Cell Biol ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38979698

RESUMEN

Cysteine cathepsins are lysosomal proteases subject to dynamic regulation within antigen-presenting cells during the immune response and associated diseases. To investigate the regulation of cathepsin X, a carboxy-mono-exopeptidase, during maturation of dendritic cells (DCs), we exposed immortalized mouse DCs to various Toll-like receptor agonists. Using a cathepsin X-selective activity-based probe, sCy5-Nle-SY, we observed a significant increase in cathepsin X activation upon TLR-9 agonism with CpG, and to a lesser extent with Pam3 (TLR1/2), FSL-1 (TLR2/6) and LPS (TLR4). Despite clear maturation of DCs in response to Poly I:C (TLR3), cathepsin X activity was only slightly increased by this agonist, suggesting differential regulation of cathepsin X downstream of TLR activation. We demonstrated that cathepsin X was upregulated at the transcriptional level in response to CpG. This occurred at late time points and was not dampened by NF-κB inhibition. Factors secreted from CpG-treated cells were able to provoke cathepsin X upregulation when applied to naïve cells. Among these factors was IL-6, which on its own was sufficient to induce transcriptional upregulation and activation of cathepsin X. IL-6 is highly secreted by DCs in response to CpG but much less so in response to poly I:C, and inhibition of the IL-6 receptor subunit glycoprotein 130 prevented CpG-mediated cathepsin X upregulation. Collectively, these results demonstrate that cathepsin X is differentially transcribed during DC maturation in response to diverse stimuli, and that secreted IL-6 is critical for its dynamic regulation.

4.
Biol Chem ; 405(5): 351-365, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38410910

RESUMEN

Proteases function within sophisticated networks. Altering the activity of one protease can have sweeping effects on other proteases, leading to changes in their activity, structure, specificity, localisation, stability, and expression. Using a suite of chemical tools, we investigated the impact of cathepsin X, a lysosomal cysteine protease, on the activity and expression of other cysteine proteases and their inhibitors in dendritic cells. Among all proteases examined, cathepsin X gene deletion specifically altered cathepsin L levels; pro-cathepsin L and its single chain accumulated while the two-chain form was unchanged. This effect was recapitulated by chemical inhibition of cathepsin X, suggesting a dependence on its catalytic activity. We demonstrated that accumulation of pro- and single chain cathepsin L was not due to a lack of direct cleavage by cathepsin X or altered glycosylation, secretion, or mRNA expression but may result from changes in lysosomal oxidative stress or pH. In the absence of active cathepsin X, nuclear cathepsin L and cleavage of the known nuclear cathepsin L substrate, Lamin B1, were diminished. Thus, cathepsin X activity selectively regulates cathepsin L, which has the potential to impact the degree of cathepsin L proteolysis, the nature of substrates that it cleaves, and the location of cleavage.


Asunto(s)
Catepsina L , Catepsina L/metabolismo , Catepsina L/deficiencia , Catepsina L/genética , Animales , Ratones , Núcleo Celular/metabolismo , Especificidad por Sustrato , Ratones Noqueados , Células Dendríticas/metabolismo
5.
Am J Med Genet A ; 194(6): e63549, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38314656

RESUMEN

Choanal atresia and stenosis are common causes of congenital nasal obstruction, but their epidemiology is poorly understood. Compared to bilateral choanal atresia/stenosis, unilateral choanal atresia/stenosis is generally diagnosed later and might be under-ascertained in birth defect registries. Data from the population-based Texas Birth Defects Registry and Texas vital records, 1999-2018, were used to assess the prevalence of choanal atresia/stenosis. Poisson regression models were used to evaluate associations with infant and maternal characteristics in two analytic groups: isolated choanal atresia/stenosis (n = 286) and isolated, bilateral choanal atresia/stenosis (n = 105). The overall prevalence of choanal atresia/stenosis was 0.92/10,000, and the prevalence of isolated choanal atresia/stenosis was 0.37/10,000 livebirths. Variables associated with choanal atresia/stenosis in one or both analytic groups included infant sex, pregnancy plurality, maternal race/ethnicity, maternal age, and maternal residence on the Texas-Mexico border. In general, adjusted prevalence ratios estimated from the two analytic groups were in the same direction but tended to be stronger in the analyses restricted to isolated, bilateral defects. Epidemiologic studies of isolated choanal atresia/stenosis should consider focusing on cases with bilateral defects, and prioritizing analyses of environmental, social, and structural factors that could account for the association with maternal residence on the Texas-Mexico border.


Asunto(s)
Atresia de las Coanas , Sistema de Registros , Humanos , Atresia de las Coanas/epidemiología , Atresia de las Coanas/genética , Texas/epidemiología , Femenino , Masculino , Prevalencia , Recién Nacido , Lactante , Adulto , Embarazo
6.
Am J Med Genet A ; : e63714, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770996

RESUMEN

Epidemiologic studies of birth defects often conduct separate analyses for cases that have isolated defects (e.g., spina bifida only) and cases that have multiple defects (e.g., spina bifida and a congenital heart defect). However, in some instances, cases with additional defects (e.g., spina bifida and clubfoot) may be more appropriately considered as isolated because the co-occurring defect (clubfoot) is believed to be developmentally related to the defect of interest. Determining which combinations should be considered isolated can be challenging and potentially resource intensive for registries. Thus, we developed automated classification procedures for differentiating between isolated versus multiple defects, while accounting for developmentally related defects, and applied the approach to data from the Texas Birth Defects Registry (1999-2018 deliveries). Among 235,544 nonsyndromic cases in Texas, 89% of cases were classified as having isolated defects, with proportions ranging from 25% to 92% across 43 specific defects analyzed. A large proportion of isolated cases with spina bifida (44%), lower limb reduction defects (44%), and holoprosencephaly (32%) had developmentally related defects. Overall, our findings strongly support the need to account for isolated versus multiple defects in risk factor association analyses and to account for developmentally related defects when doing so, which has implications for interpreting prior studies.

7.
Am J Med Genet A ; : e63644, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688863

RESUMEN

The male predominance in sporadic thoracic aortic aneurysm and dissection (TAD) suggests that the X chromosome contributes to TAD, but this has not been tested. We investigated whether X-linked variation-common (minor allele frequency [MAF] ≥0.01) and rare (MAF <0.01)-was associated with sporadic TAD in three cohorts of European descent (Discovery: 364 cases, 874 controls; Replication: 516 cases, 440,131 controls, and ARIC [Atherosclerosis Risk in Communities study]: 753 cases, 2247 controls). For analysis of common variants, we applied a sex-stratified logistic regression model followed by a meta-analysis of sex-specific odds ratios. Furthermore, we conducted a meta-analysis of overlapping common variants between the Discovery and Replication cohorts. For analysis of rare variants, we used a sex-stratified optimized sequence kernel association test model. Common variants results showed no statistically significant findings in the Discovery cohort. An intergenic common variant near SPANXN1 was statistically significant in the Replication cohort (p = 1.81 × 10-8). The highest signal from the meta-analysis of the Discovery and Replication cohorts was a ZNF182 intronic common variant (p = 3.5 × 10-6). In rare variants results, RTL9 reached statistical significance (p = 5.15 × 10-5). Although most of our results were statistically insignificant, our analysis is the most comprehensive X-chromosome association analysis of sporadic TAD to date.

8.
Am J Hum Genet ; 106(1): 26-40, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31870554

RESUMEN

The 22q11.2 deletion syndrome (22q11.2DS) results from non-allelic homologous recombination between low-copy repeats termed LCR22. About 60%-70% of individuals with the typical 3 megabase (Mb) deletion from LCR22A-D have congenital heart disease, mostly of the conotruncal type (CTD), whereas others have normal cardiac anatomy. In this study, we tested whether variants in the hemizygous LCR22A-D region are associated with risk for CTDs on the basis of the sequence of the 22q11.2 region from 1,053 22q11.2DS individuals. We found a significant association (FDR p < 0.05) of the CTD subset with 62 common variants in a single linkage disequilibrium (LD) block in a 350 kb interval harboring CRKL. A total of 45 of the 62 variants were associated with increased risk for CTDs (odds ratio [OR) ranges: 1.64-4.75). Associations of four variants were replicated in a meta-analysis of three genome-wide association studies of CTDs in affected individuals without 22q11.2DS. One of the replicated variants, rs178252, is located in an open chromatin region and resides in the double-elite enhancer, GH22J020947, that is predicted to regulate CRKL (CRK-like proto-oncogene, cytoplasmic adaptor) expression. Approximately 23% of patients with nested LCR22C-D deletions have CTDs, and inactivation of Crkl in mice causes CTDs, thus implicating this gene as a modifier. Rs178252 and rs6004160 are expression quantitative trait loci (eQTLs) of CRKL. Furthermore, set-based tests identified an enhancer that is predicted to target CRKL and is significantly associated with CTD risk (GH22J020946, sequence kernal association test (SKAT) p = 7.21 × 10-5) in the 22q11.2DS cohort. These findings suggest that variance in CTD penetrance in the 22q11.2DS population can be explained in part by variants affecting CRKL expression.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 22/genética , Cardiopatías Congénitas/genética , Polimorfismo de Nucleótido Simple , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Estudio de Asociación del Genoma Completo , Cardiopatías Congénitas/patología , Humanos , Desequilibrio de Ligamiento , Masculino , Fenotipo , Proto-Oncogenes Mas , Duplicaciones Segmentarias en el Genoma
9.
Am J Med Genet A ; 191(1): 190-204, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36286533

RESUMEN

Structural birth defects that occur in infants with syndromes may be etiologically distinct from those that occur in infants in whom there is not a recognized pattern of malformations; however, population-based registries often lack the resources to classify syndromic status via case reviews. We developed criteria to systematically identify infants with suspected syndromes, grouped by syndrome type and level of effort required for syndrome classification (e.g., text search). We applied this algorithm to the Texas Birth Defects Registry (TBDR) to describe the proportion of infants with syndromes delivered during 1999-2014. We also developed a bias analysis tool to estimate the potential percent bias resulting from including infants with syndromes in studies of risk factors. Among 207,880 cases with birth defects in the TBDR, 15% had suspected syndromes and 85% were assumed to be nonsyndromic, with a range across defect types from 28.5% (atrioventricular septal defects) to 98.9% (pyloric stenosis). Across hypothetical scenarios varying expected parameters (e.g., nonsyndromic proportion), the inclusion of syndromic cases in analyses resulted in up to 50.0% bias in prevalence ratios. In summary, we present a framework for identifying infants with syndromic conditions; implementation might harmonize syndromic classification across registries and reduce bias in association estimates.


Asunto(s)
Anomalías Congénitas , Defectos de los Tabiques Cardíacos , Lactante , Humanos , Síndrome , Prevalencia , Sistema de Registros , Texas/epidemiología , Anomalías Congénitas/diagnóstico , Anomalías Congénitas/epidemiología , Anomalías Congénitas/genética
10.
J Immunol ; 207(9): 2255-2264, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34599081

RESUMEN

MHC class II (MHC II) Ag presentation by dendritic cells (DCs) is critical for CD4+ T cell immunity. Cell surface levels of MHC II loaded with peptide is controlled by ubiquitination. In this study, we have examined how MHC II ubiquitination impacts immunity using MHC IIKRKI/KI mice expressing mutant MHC II molecules that are unable to be ubiquitinated. Numbers of conventional DC (cDC) 1, cDC2 and plasmacytoid DCs were significantly reduced in MHC IIKRKI/KI spleen, with the remaining MHC IIKRKI/KI DCs expressing an altered surface phenotype. Whereas Ag uptake, endosomal pH, and cathepsin protease activity were unaltered, MHC IIKRKI/KI cDC1 produced increased inflammatory cytokines and possessed defects in Ag proteolysis. Immunization of MHC IIKRKI/KI mice identified impairments in MHC II and MHC class I presentation of soluble, cell-associated and/or DC-targeted OVA via mAb specific for DC surface receptor Clec9A (anti-Clec9A-OVA mAb). Reduced T cell responses and impaired CTL killing was observed in MHC IIKRKI/KI mice following immunization with cell-associated and anti-Clec9A-OVA. Immunization of MHC IIKRKI/KI mice failed to elicit follicular Th cell responses and generated barely detectable Ab to anti-Clec9A mAb-targeted Ag. In summary, MHC II ubiquitination in DCs impacts the homeostasis, phenotype, cytokine production, and Ag proteolysis by DCs with consequences for Ag presentation and T cell and Ab-mediated immunity.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Células Dendríticas/inmunología , Centro Germinal/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Animales , Presentación de Antígeno/genética , Células Cultivadas , Citotoxicidad Inmunológica , Antígenos de Histocompatibilidad Clase II/genética , Inmunidad Celular , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Ubiquitinación
11.
Proc Natl Acad Sci U S A ; 117(12): 6801-6810, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32152125

RESUMEN

Coxiella burnetii is an intracellular pathogen that replicates in a lysosome-like vacuole through activation of a Dot/Icm-type IVB secretion system and subsequent translocation of effectors that remodel the host cell. Here a genome-wide small interfering RNA screen and reporter assay were used to identify host proteins required for Dot/Icm effector translocation. Significant, and independently validated, hits demonstrated the importance of multiple protein families required for endocytic trafficking of the C. burnetii-containing vacuole to the lysosome. Further analysis demonstrated that the degradative activity of the lysosome created by proteases, such as TPP1, which are transported to the lysosome by receptors, such as M6PR and LRP1, are critical for C. burnetii virulence. Indeed, the C. burnetii PmrA/B regulon, responsible for transcriptional up-regulation of genes encoding the Dot/Icm apparatus and a subset of effectors, induced expression of a virulence-associated transcriptome in response to degradative products of the lysosome. Luciferase reporter strains, and subsequent RNA-sequencing analysis, demonstrated that particular amino acids activate the C. burnetii PmrA/B two-component system. This study has further enhanced our understanding of C. burnetii pathogenesis, the host-pathogen interactions that contribute to bacterial virulence, and the different environmental triggers pathogens can sense to facilitate virulence.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/fisiología , Coxiella burnetii/fisiología , Interacciones Huésped-Patógeno , Lisosomas/metabolismo , Fiebre Q/microbiología , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Células HeLa , Humanos , Lisosomas/microbiología , Transporte de Proteínas , Tripeptidil Peptidasa 1 , Virulencia
12.
J Neurosci ; 41(1): 193-210, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33172978

RESUMEN

Oral squamous cell carcinoma (OSCC) is one of the most painful cancers, which interferes with orofacial function including talking and eating. We report that legumain (Lgmn) cleaves protease-activated receptor-2 (PAR2) in the acidic OSCC microenvironment to cause pain. Lgmn is a cysteine protease of late endosomes and lysosomes that can be secreted; it exhibits maximal activity in acidic environments. The role of Lgmn in PAR2-dependent cancer pain is unknown. We studied Lgmn activation in human oral cancers and oral cancer mouse models. Lgmn was activated in OSCC patient tumors, compared with matched normal oral tissue. After intraplantar, facial or lingual injection, Lgmn evoked nociception in wild-type (WT) female mice but not in female mice lacking PAR2 in NaV1.8-positive neurons (Par2Nav1.8), nor in female mice treated with a Lgmn inhibitor, LI-1. Inoculation of an OSCC cell line caused mechanical and thermal hyperalgesia that was reversed by LI-1. Par2Nav1.8 and Lgmn deletion attenuated mechanical allodynia in female mice with carcinogen-induced OSCC. Lgmn caused PAR2-dependent hyperexcitability of trigeminal neurons from WT female mice. Par2 deletion, LI-1, and inhibitors of adenylyl cyclase or protein kinase A (PKA) prevented the effects of Lgmn. Under acidified conditions, Lgmn cleaved within the extracellular N terminus of PAR2 at Asn30↓Arg31, proximal to the canonical trypsin activation site. Lgmn activated PAR2 by biased mechanisms in HEK293 cells to induce Ca2+ mobilization, cAMP formation, and PKA/protein kinase D (PKD) activation, but not ß-arrestin recruitment or PAR2 endocytosis. Thus, in the acidified OSCC microenvironment, Lgmn activates PAR2 by biased mechanisms that evoke cancer pain.SIGNIFICANCE STATEMENT Oral squamous cell carcinoma (OSCC) is one of the most painful cancers. We report that legumain (Lgmn), which exhibits maximal activity in acidic environments, cleaves protease-activated receptor-2 (PAR2) on neurons to produce OSCC pain. Active Lgmn was elevated in OSCC patient tumors, compared with matched normal oral tissue. Lgmn evokes pain-like behavior through PAR2 Exposure of pain-sensing neurons to Lgmn decreased the current required to generate an action potential through PAR2 Inhibitors of adenylyl cyclase and protein kinase A (PKA) prevented the effects of Lgmn. Lgmn activated PAR2 to induce calcium mobilization, cAMP formation, and activation of protein kinase D (PKD) and PKA, but not ß-arrestin recruitment or PAR2 endocytosis. Thus, Lgmn is a biased agonist of PAR2 that evokes cancer pain.


Asunto(s)
Dolor en Cáncer/inducido químicamente , Carcinoma de Células Escamosas/complicaciones , Cisteína Endopeptidasas , Neoplasias de la Boca/complicaciones , Receptor PAR-2/agonistas , Anciano , Anciano de 80 o más Años , Animales , Arrestina/metabolismo , Dolor en Cáncer/psicología , Proteínas Quinasas Dependientes de AMP Cíclico/efectos de los fármacos , Cisteína Endopeptidasas/administración & dosificación , Endocitosis/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Proteína Quinasa C/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Receptor PAR-2/genética , Microambiente Tumoral/efectos de los fármacos
13.
PLoS Pathog ; 16(6): e1008485, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32589689

RESUMEN

Ozonide antimalarials, OZ277 (arterolane) and OZ439 (artefenomel), are synthetic peroxide-based antimalarials with potent activity against the deadliest malaria parasite, Plasmodium falciparum. Here we used a "multi-omics" workflow, in combination with activity-based protein profiling (ABPP), to demonstrate that peroxide antimalarials initially target the haemoglobin (Hb) digestion pathway to kill malaria parasites. Time-dependent metabolomic profiling of ozonide-treated P. falciparum infected red blood cells revealed a rapid depletion of short Hb-derived peptides followed by subsequent alterations in lipid and nucleotide metabolism, while untargeted peptidomics showed accumulation of longer Hb-derived peptides. Quantitative proteomics and ABPP assays demonstrated that Hb-digesting proteases were increased in abundance and activity following treatment, respectively. Ozonide-induced depletion of short Hb-derived peptides was less extensive in a drug-treated K13-mutant artemisinin resistant parasite line (Cam3.IIR539T) than in the drug-treated isogenic sensitive strain (Cam3.IIrev), further confirming the association between ozonide activity and Hb catabolism. To demonstrate that compromised Hb catabolism may be a primary mechanism involved in ozonide antimalarial activity, we showed that parasites forced to rely solely on Hb digestion for amino acids became hypersensitive to short ozonide exposures. Quantitative proteomics analysis also revealed parasite proteins involved in translation and the ubiquitin-proteasome system were enriched following drug treatment, suggestive of the parasite engaging a stress response to mitigate ozonide-induced damage. Taken together, these data point to a mechanism of action involving initial impairment of Hb catabolism, and indicate that the parasite regulates protein turnover to manage ozonide-induced damage.


Asunto(s)
Adamantano/análogos & derivados , Antimaláricos/farmacología , Eritrocitos , Hemoglobinas/metabolismo , Compuestos Heterocíclicos con 1 Anillo/farmacología , Peróxidos/farmacología , Plasmodium falciparum/metabolismo , Compuestos de Espiro/farmacología , Adamantano/farmacología , Eritrocitos/metabolismo , Eritrocitos/parasitología , Hemoglobinas/genética , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/farmacología , Humanos , Plasmodium falciparum/genética , Proteómica
14.
Mol Psychiatry ; 26(12): 7838-7850, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34489530

RESUMEN

Respiratory chain complex I deficiency elicits mitochondrial dysfunction and reactive oxidative species (ROS), which plays a crucial role in Parkinson's disease (PD) pathogenesis. However, it remains unclear whether the impairment in other complexes in the mitochondrial oxidative phosphorylation chain is also sufficient to trigger PD onset. Here we show that inhibition of Complex II or III in the electron transport chain (ETC) induces the motor disorder and PD pathologies in neuronal Thy1-C/EBPß transgenic mice. Through a cell-based screening of mitochondrial respiratory chain inhibitors, we identified TTFA (complex II inhibitor) and Atovaquone (complex III inhibitor), which robustly block the oxidative phosphorylation functions, strongly escalate ROS, and activate C/EBPß/AEP pathway that triggers dopaminergic neuronal cell death. Oral administration of these inhibitors to Thy1-C/EBPß mice elicits constipation and motor defects, associated with Lewy body-like inclusions. Deletion of SDHD (Succinate dehydrogenase) gene from the complex II in the Substantia Nigra of Thy1-C/EBPß mice triggers ROS and PD pathologies, resulting in motor disorders. Hence, our findings demonstrate that mitochondrial ETC inactivation triggers PD pathogenesis via activating C/EBPß/AEP pathway.


Asunto(s)
Enfermedad de Parkinson , Animales , Neuronas Dopaminérgicas/metabolismo , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Estrés Oxidativo/fisiología , Enfermedad de Parkinson/metabolismo , Sustancia Negra/metabolismo , Sustancia Negra/patología
15.
Am J Med Genet A ; 188(8): 2303-2314, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35451555

RESUMEN

Obstructive heart defects (OHDs) share common structural lesions in arteries and cardiac valves, accounting for ~25% of all congenital heart defects. OHDs are highly heritable, resulting from interplay among maternal exposures, genetic susceptibilities, and epigenetic phenomena. A genome-wide association study was conducted in National Birth Defects Prevention Study participants (Ndiscovery  = 3978; Nreplication  = 2507), investigating the genetic architecture of OHDs using transmission/disequilibrium tests (TDT) in complete case-parental trios (Ndiscovery_TDT  = 440; Nreplication_TDT  = 275) and case-control analyses separately in infants (Ndiscovery_CCI  = 1635; Nreplication_CCI  = 990) and mothers (case status defined by infant; Ndiscovery_CCM  = 1703; Nreplication_CCM  = 1078). In the TDT analysis, the SLC44A2 single nucleotide polymorphism (SNP) rs2360743 was significantly associated with OHD (pdiscovery  = 4.08 × 10-9 ; preplication  = 2.44 × 10-4 ). A CAPN11 SNP (rs55877192) was suggestively associated with OHD (pdiscovery  = 1.61 × 10-7 ; preplication  = 0.0016). Two other SNPs were suggestively associated (p < 1 × 10-6 ) with OHD in only the discovery sample. In the case-control analyses, no SNPs were genome-wide significant, and, even with relaxed thresholds ( × discovery < 1 × 10-5 and preplication < 0.05), only one SNP (rs188255766) in the infant analysis was associated with OHDs (pdiscovery  = 1.42 × 10-6 ; preplication  = 0.04). Additional SNPs with pdiscovery < 1 × 10-5 were in loci supporting previous findings but did not replicate. Overall, there was modest evidence of an association between rs2360743 and rs55877192 and OHD and some evidence validating previously published findings.


Asunto(s)
Estudio de Asociación del Genoma Completo , Cardiopatías Congénitas , Estudios de Casos y Controles , Femenino , Predisposición Genética a la Enfermedad , Cardiopatías Congénitas/epidemiología , Cardiopatías Congénitas/genética , Humanos , Lactante , Polimorfismo de Nucleótido Simple
16.
Cleft Palate Craniofac J ; 59(4): 417-426, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33906455

RESUMEN

OBJECTIVE: To investigate 2- to 5-way patterns of defects co-occurring with orofacial clefts using data from a population-based registry. DESIGN: We used data from the Texas Birth Defects Registry for deliveries between 1999 and 2014 to Texas residents, including 1884 cases with cleft palate (CP) and 5289 cases with cleft lip with or without cleft palate (CL±P) without a known syndrome. We identified patterns of defects co-occurring with CP and with CL±P observed more frequently than would be expected if these defects occurred independently. We calculated adjusted observed-to-expected (O/E) ratios to account for the known tendency of birth defects to cluster nonspecifically. RESULTS: Among infants without a syndrome, 23% with CP and 21% with CL±P had at least 1 additional congenital anomaly. Several combinations of defects were observed much more often than expected. For example, the combination of CL±P, congenital hydrocephaly, anophthalmia, and other nose anomalies had an O/E ratio of 605. For both CP and CL±P, co-occurrence patterns with the highest O/E ratios involved craniofacial and brain abnormalities, and many included the skeletal, cardiovascular, and renal systems. CONCLUSIONS: The patterns of defects we observed co-occurring with clefts more often than expected may help improve our understanding of the relationships between multiple defects. Further work to better understand some of the top defect combinations could reveal new phenotypic subgroups and increase our knowledge of the developmental mechanisms that underlie the respective defects.


Asunto(s)
Labio Leporino , Fisura del Paladar , Anomalías de la Boca , Labio Leporino/epidemiología , Fisura del Paladar/epidemiología , Humanos , Lactante , Síndrome
17.
Hum Mol Genet ; 28(10): 1726-1737, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30689861

RESUMEN

Mutations in IRF6, TFAP2A and GRHL3 cause orofacial clefting syndromes in humans. However, Tfap2a and Grhl3 are also required for neurulation in mice. Here, we found that homeostasis of Irf6 is also required for development of the neural tube and associated structures. Over-expression of Irf6 caused exencephaly, a rostral neural tube defect, through suppression of Tfap2a and Grhl3 expression. Conversely, loss of Irf6 function caused a curly tail and coincided with a reduction of Tfap2a and Grhl3 expression in tail tissues. To test whether Irf6 function in neurulation was conserved, we sequenced samples obtained from human cases of spina bifida and anencephaly. We found two likely disease-causing variants in two samples from patients with spina bifida. Overall, these data suggest that the Tfap2a-Irf6-Grhl3 genetic pathway is shared by two embryologically distinct morphogenetic events that previously were considered independent during mammalian development. In addition, these data suggest new candidates to delineate the genetic architecture of neural tube defects and new therapeutic targets to prevent this common birth defect.


Asunto(s)
Proteínas de Unión al ADN/genética , Factores Reguladores del Interferón/genética , Neurulación/genética , Factor de Transcripción AP-2/genética , Factores de Transcripción/genética , Animales , Secuencia Conservada/genética , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Ratones , Mutación , Tubo Neural/crecimiento & desarrollo , Tubo Neural/patología , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/patología , Transducción de Señal/genética , Disrafia Espinal/genética , Disrafia Espinal/patología
18.
Am J Med Genet A ; 185(6): 1787-1793, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33749998

RESUMEN

Few population-based studies have analyzed patterns of co-occurring birth defects among those with trisomy 13. We evaluated the frequency of all possible combinations of any one, two, three, or four additional co-occurring birth defects among 736 individuals with trisomy 13 using data from the Texas Birth Defects Registry for deliveries during 1999-2014. We calculated the observed-to-expected ratio for each combination, adjusting for the known tendency for birth defects to cluster non-specifically. To address potential ascertainment differences among live births and non-live births, we repeated analyses specifically among live births. The combination of defects with the largest observed-to-expected ratio was microcephalus, reduction deformities of brain (e.g., holoprosencephaly), anomalies of nose, and polydactyly. As expected, most of the highest 30 observed-to-expected ratios involved combinations with documented features of trisomy 13, including defects of the scalp (e.g., aplasia cutis) and heart. Results were similar among sensitivity analyses restricted to live births. Our findings may help further delineate the phenotypic spectrum for trisomy 13 and may inform future research related to improving screening and counseling for the condition.


Asunto(s)
Anomalías Múltiples/genética , Cardiopatías Congénitas/genética , Holoprosencefalia/genética , Síndrome de la Trisomía 13/genética , Anomalías Múltiples/epidemiología , Anomalías Múltiples/patología , Adolescente , Adulto , Encéfalo/patología , Niño , Preescolar , Anomalías Congénitas/epidemiología , Anomalías Congénitas/genética , Anomalías Congénitas/patología , Femenino , Asesoramiento Genético , Cardiopatías Congénitas/patología , Holoprosencefalia/patología , Humanos , Lactante , Recién Nacido , Nacimiento Vivo/epidemiología , Nacimiento Vivo/genética , Masculino , Embarazo , Texas , Síndrome de la Trisomía 13/epidemiología , Síndrome de la Trisomía 13/patología , Adulto Joven
19.
Paediatr Perinat Epidemiol ; 35(6): 627-634, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33738822

RESUMEN

BACKGROUND: Little is known about the extent to which severe maternal morbidity (SMM) at delivery impacts early and late postpartum readmission. OBJECTIVES: We examined readmission rates for women with and without SMM (and their 18 subtypes) at delivery and characterised the most common medical reasons for readmissions. METHODS: We conducted a retrospective cohort study utilising the 2016-2017 Nationwide Readmissions Database among women giving births in the United States. Deliveries were classified according to the presence or absence of 18 SMM indicators defined by the Centers for Disease Control and Prevention using the International Classification of Diseases, Tenth Edition, Clinical Modification (ICD-10-CM) diagnosis and procedure codes. The primary outcome of this study was all-cause early (≤7 day) and late (8 to 42 day) postpartum readmission. Survey-weighted Poisson regression with robust error variance was used to generate adjusted risk ratios (RR) and 95% confidence intervals (CI) to investigate the association between SMM and early and late postpartum readmission. Additionally, we compared principal diagnoses codes during readmission hospitalisations among women with and without SMM at delivery. RESULTS: Of the 6 193 852 women examined, 4.9% (n = 4928) with any SMM and 1.4% (n = 83 995) with no SMM were readmitted within 42 days after delivery. After adjusting for obstetric co-morbidities and sociodemographic factors, women with any SMM were 57% (RR 1.57, 95% CI 1.47, 1.67) more likely to have an early readmission and 69% (RR 1.69, 95% CI 1.57, 1.82) more likely to have a late readmission compared to women with no SMM at delivery. However, the risk was attenuated when excluding women with blood transfusion only. Women with and without SMM were readmitted predominantly for obstetric complications and infections. CONCLUSIONS: Women with SMM at delivery were more likely to experience both early and late postpartum readmission, independent of their obstetrical co-morbidity burden and sociodemographic factors.


Asunto(s)
Readmisión del Paciente , Periodo Posparto , Transfusión Sanguínea , Femenino , Hospitalización , Humanos , Morbilidad , Embarazo , Estudios Retrospectivos , Factores de Riesgo , Estados Unidos/epidemiología
20.
Biochemistry ; 59(3): 329-340, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31774660

RESUMEN

Legumain (asparaginyl endopeptidase) is the only protease with a preference for cleavage after asparagine residues. Increased legumain activity is a hallmark of inflammation, neurodegenerative diseases, and cancer, and legumain inhibitors have exhibited therapeutic effects in mouse models of these pathologies. Improved knowledge of its substrates and cellular functions is a requisite to further validation of legumain as a drug target. We, therefore, aimed to investigate the effects of legumain inhibition in macrophages using an unbiased and systematic approach. By shotgun proteomics, we identified 16 094 unique peptides in RAW264.7 cells. Among these, 326 unique peptides were upregulated in response to legumain inhibition, while 241 were downregulated. Many of these proteins were associated with mitochondria and metabolism, especially iron metabolism, indicating that legumain may have a previously unknown impact on related processes. Furthermore, we used N-terminomics/TAILS (terminal amine isotopic labeling of substrates) to identify potential substrates of legumain. We identified three new proteins that are cleaved after asparagine residues, which may reflect legumain-dependent cleavage. We confirmed that frataxin, a mitochondrial protein associated with the formation of iron-sulfur clusters, can be cleaved by legumain. This further asserts a potential contribution of legumain to mitochondrial function and iron metabolism. Lastly, we also identified a potential new cleavage site within legumain itself that may give rise to a 25 kDa form of legumain that has previously been observed in multiple cell and tissue types. Collectively, these data shed new light on the potential functions of legumain and will be critical for understanding its contribution to disease.


Asunto(s)
Cisteína Endopeptidasas/química , Mitocondrias/metabolismo , Péptidos/genética , Proteómica , Animales , Asparagina/química , Asparagina/genética , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Regulación de la Expresión Génica/genética , Humanos , Hierro/metabolismo , Marcaje Isotópico , Macrófagos/química , Macrófagos/metabolismo , Ratones , Mitocondrias/genética , Péptidos/química , Células RAW 264.7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA