Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Biol Chem ; 300(4): 107172, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38499151

RESUMEN

The recently discovered interaction between Presenilin 1 (PS1), a catalytic subunit of γ-secretase responsible for generating amyloid-ß peptides, and GLT-1, a major glutamate transporter in the brain (EAAT2), provides a mechanistic link between these two key factors involved in Alzheimer's disease (AD) pathology. Modulating this interaction can be crucial to understand the consequence of such crosstalk in AD context and beyond. However, the interaction sites between these two proteins are unknown. Herein, we utilized an alanine scanning approach coupled with FRET-based fluorescence lifetime imaging microscopy to identify the interaction sites between PS1 and GLT-1 in their native environment within intact cells. We found that GLT-1 residues at position 276 to 279 (TM5) and PS1 residues at position 249 to 252 (TM6) are crucial for GLT-1-PS1 interaction. These results have been cross validated using AlphaFold Multimer prediction. To further investigate whether this interaction of endogenously expressed GLT-1 and PS1 can be prevented in primary neurons, we designed PS1/GLT-1 cell-permeable peptides (CPPs) targeting the PS1 or GLT-1 binding site. We used HIV TAT domain to allow for cell penetration which was assayed in neurons. First, we assessed the toxicity and penetration of CPPs by confocal microscopy. Next, to ensure the efficiency of CPPs, we monitored the modulation of GLT-1-PS1 interaction in intact neurons by fluorescence lifetime imaging microscopy. We saw significantly less interaction between PS1 and GLT-1 with both CPPs. Our study establishes a new tool to study the functional aspect of GLT-1-PS1 interaction and its relevance in normal physiology and AD models.


Asunto(s)
Transportador 2 de Aminoácidos Excitadores , Presenilina-1 , Animales , Humanos , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Sitios de Unión , Transportador 2 de Aminoácidos Excitadores/química , Transportador 2 de Aminoácidos Excitadores/genética , Transportador 2 de Aminoácidos Excitadores/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Neuronas/metabolismo , Presenilina-1/química , Presenilina-1/genética , Presenilina-1/metabolismo , Unión Proteica , Péptidos/metabolismo
2.
Curr Oncol Rep ; 26(4): 409-420, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38502417

RESUMEN

PURPOSE OF REVIEW: This review seeks to identify and describe novel genetic and protein targets and their associated therapeutics currently being used or studied in the treatment of acute myeloid leukemia (AML). RECENT FINDINGS: Over the course of the last 5-6 years, several targeted therapies have been approved by the FDA, for the treatment of both newly diagnosed as well as relapsed/refractory AML. These novel therapeutics, as well as several others currently under investigation, have demonstrated activity in AML and have improved outcomes for many patients. Patient outcomes in AML have slowly improved over time, though for many patients, particularly elderly patients or those with relapsed/refractory disease, mortality remains very high. With the identification of several molecular/genetic drivers and protein targets and development of therapeutics which leverage those mechanisms to target leukemic cells, outcomes for patients with AML have improved and continue to improve significantly.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Anciano , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética
3.
Front Robot AI ; 11: 1333837, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39157793

RESUMEN

This article introduces a model-based robust control framework for electrohydraulic soft robots. The methods presented herein exploit linear system control theory as it applies to a nonlinear soft robotic system. We employ dynamic mode decomposition with control (DMDc) to create appropriate linear models from real-world measurements. We build on the theory by developing linear models in various operational regions of the system to result in a collection of linear plants used in uncertainty analysis. To complement the uncertainty analyses, we utilize H ∞ ("H Infinity") synthesis techniques to determine an optimal controller to meet performance requirements for the nominal plant. Following this methodology, we demonstrate robust control over a multi-input multi-output (MIMO) hydraulically amplified self-healing electrostatic (HASEL)-actuated system. The simplifications in the proposed framework help address the inherent uncertainties and complexities of compliant robots, providing a flexible approach for real-time control of soft robotic systems in real-world applications.

4.
Animals (Basel) ; 14(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38540003

RESUMEN

The objective of this study was to evaluate the effects of feeding sugarcane-derived polyphenolic supplement (Polygain, The Product Makers Australia, Keysborough, VIC, Australia) on enteric methane (CH4) emission, rumen microbiota, and performance of second-cross lambs. For this purpose, 24 Poll Dorset × (Border Leicester × Merino) lambs were allocated to 3 different treatments: Control (C), 0.25% Polygain (0.25 PG), and 1% Polygain (1 PG) diets with a uniform basal feed (25% cracked wheat grain, 25% cracked barley grain, 25% oaten chaff, 25% lucerne chaff). Both doses of Polygain reduced the total CH4 production (g/day; p = 0.006), CH4 yield (CH4, g/kg of dry matter intake; p = 0.003) and CH4 intensity (CH4, g/kg of BW; p = 0.003). Dry matter intake tended to be greater (p = 0.08) in sheep fed 1 PG compared to the C group, with the 0.25 PG group being intermediate. The average daily gain of the lambs was improved (p = 0.03) with 1% Polygain supplementation. The relative abundance of genera Methanobrevibacter_unidentified, Methanomethylophilaceae_uncultured, Methanogenic archaeon mixed culture ISO4-G1, Methanosphaera uncultured rumen methanogen, Methanogenic archaeon ISO4-H5, and Methanobrevibacter boviskoreani JH1 were reduced with Polygain supplementation. In conclusion, feeding Polygain reduced lambs' enteric CH4 emissions, altered the rumen microbiome, and improved the growth performance of lambs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA