Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
EMBO J ; 38(15): e100871, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31304984

RESUMEN

Reactive oxygen species (ROS) are emerging as important regulators of cancer growth and metastatic spread. However, how cells integrate redox signals to affect cancer progression is not fully understood. Mitochondria are cellular redox hubs, which are highly regulated by interactions with neighboring organelles. Here, we investigated how ROS at the endoplasmic reticulum (ER)-mitochondria interface are generated and translated to affect melanoma outcome. We show that TMX1 and TMX3 oxidoreductases, which promote ER-mitochondria communication, are upregulated in melanoma cells and patient samples. TMX knockdown altered mitochondrial organization, enhanced bioenergetics, and elevated mitochondrial- and NOX4-derived ROS. The TMX-knockdown-induced oxidative stress suppressed melanoma proliferation, migration, and xenograft tumor growth by inhibiting NFAT1. Furthermore, we identified NFAT1-positive and NFAT1-negative melanoma subgroups, wherein NFAT1 expression correlates with melanoma stage and metastatic potential. Integrative bioinformatics revealed that genes coding for mitochondrial- and redox-related proteins are under NFAT1 control and indicated that TMX1, TMX3, and NFAT1 are associated with poor disease outcome. Our study unravels a novel redox-controlled ER-mitochondria-NFAT1 signaling loop that regulates melanoma pathobiology and provides biomarkers indicative of aggressive disease.


Asunto(s)
Melanoma/patología , Proteínas de la Membrana/metabolismo , Factores de Transcripción NFATC/metabolismo , Oxidación-Reducción , Proteína Disulfuro Isomerasas/metabolismo , Tiorredoxinas/metabolismo , Animales , Línea Celular Tumoral , Núcleo Celular/metabolismo , Progresión de la Enfermedad , Retículo Endoplásmico/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Melanoma/metabolismo , Proteínas de la Membrana/genética , Ratones , Mitocondrias/metabolismo , NADPH Oxidasa 4/metabolismo , Trasplante de Neoplasias , Transporte de Proteínas , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Análisis de Supervivencia , Tiorredoxinas/genética , Regulación hacia Arriba
2.
J Cell Sci ; 133(2)2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31932505

RESUMEN

Synaptic transmission between neurons relies on the exact spatial organization of postsynaptic transmitter receptors, which are recruited and positioned by dedicated scaffolding and regulatory proteins. At GABAergic synapses, the regulatory protein collybistin (Cb, also known as ARHGEF9) interacts with small GTPases, cell adhesion proteins and phosphoinositides to recruit the scaffolding protein gephyrin and GABAA receptors to nascent synapses. We dissected the interaction of Cb with the small Rho-like GTPase TC10 (also known as RhoQ) and phospholipids. Our data define a protein-lipid interaction network that controls the clustering of gephyrin at synapses. Within this network, TC10 and monophosphorylated phosphoinositides, particulary phosphatidylinositol 3-phosphate (PI3P), provide a coincidence detection platform that allows the accumulation and activation of Cb in endomembranes. Upon activation, TC10 induces a phospholipid affinity switch in Cb, which allows Cb to specifically interact with phosphoinositide species present at the plasma membrane. We propose that this GTPase-based regulatory switch mechanism represents an important step in the process of tethering of Cb-dependent scaffolds and receptors at nascent postsynapses.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Proteínas de la Membrana/metabolismo , Fosfolípidos/metabolismo , Transmisión Sináptica/genética , Análisis por Conglomerados , Humanos , Sinapsis/metabolismo
3.
Glia ; 69(10): 2362-2377, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34137074

RESUMEN

Cerebral disease manifestation occurs in about two thirds of males with X-linked adrenoleukodystrophy (CALD) and is fatally progressive if left untreated. Early histopathologic studies categorized CALD as an inflammatory demyelinating disease, which led to repeated comparisons to multiple sclerosis (MS). The aim of this study was to revisit the relationship between axonal damage and myelin loss in CALD. We applied novel immunohistochemical tools to investigate axonal damage, myelin loss and myelin repair in autopsy brain tissue of eight CALD and 25 MS patients. We found extensive and severe acute axonal damage in CALD already in prelesional areas defined by microglia loss and relative myelin preservation. In contrast to MS, we did not observe selective phagocytosis of myelin, but a concomitant decay of the entire axon-myelin unit in all CALD lesion stages. Using a novel marker protein for actively remyelinating oligodendrocytes, breast carcinoma-amplified sequence (BCAS) 1, we show that repair pathways are activated in oligodendrocytes in CALD. Regenerating cells, however, were affected by the ongoing disease process. We provide evidence that-in contrast to MS-selective myelin phagocytosis is not characteristic of CALD. On the contrary, our data indicate that acute axonal injury and permanent axonal loss are thus far underestimated features of the disease that must come into focus in our search for biomarkers and novel therapeutic approaches.


Asunto(s)
Adrenoleucodistrofia , Esclerosis Múltiple , Adrenoleucodistrofia/metabolismo , Axones/metabolismo , Humanos , Masculino , Esclerosis Múltiple/patología , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo
4.
J Microsc ; 284(1): 56-73, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34214188

RESUMEN

A modern day light microscope has evolved from a tool devoted to making primarily empirical observations to what is now a sophisticated , quantitative device that is an integral part of both physical and life science research. Nowadays, microscopes are found in nearly every experimental laboratory. However, despite their prevalent use in capturing and quantifying scientific phenomena, neither a thorough understanding of the principles underlying quantitative imaging techniques nor appropriate knowledge of how to calibrate, operate and maintain microscopes can be taken for granted. This is clearly demonstrated by the well-documented and widespread difficulties that are routinely encountered in evaluating acquired data and reproducing scientific experiments. Indeed, studies have shown that more than 70% of researchers have tried and failed to repeat another scientist's experiments, while more than half have even failed to reproduce their own experiments. One factor behind the reproducibility crisis of experiments published in scientific journals is the frequent underreporting of imaging methods caused by a lack of awareness and/or a lack of knowledge of the applied technique. Whereas quality control procedures for some methods used in biomedical research, such as genomics (e.g. DNA sequencing, RNA-seq) or cytometry, have been introduced (e.g. ENCODE), this issue has not been tackled for optical microscopy instrumentation and images. Although many calibration standards and protocols have been published, there is a lack of awareness and agreement on common standards and guidelines for quality assessment and reproducibility. In April 2020, the QUality Assessment and REProducibility for instruments and images in Light Microscopy (QUAREP-LiMi) initiative was formed. This initiative comprises imaging scientists from academia and industry who share a common interest in achieving a better understanding of the performance and limitations of microscopes and improved quality control (QC) in light microscopy. The ultimate goal of the QUAREP-LiMi initiative is to establish a set of common QC standards, guidelines, metadata models and tools, including detailed protocols, with the ultimate aim of improving reproducible advances in scientific research. This White Paper (1) summarizes the major obstacles identified in the field that motivated the launch of the QUAREP-LiMi initiative; (2) identifies the urgent need to address these obstacles in a grassroots manner, through a community of stakeholders including, researchers, imaging scientists, bioimage analysts, bioimage informatics developers, corporate partners, funding agencies, standards organizations, scientific publishers and observers of such; (3) outlines the current actions of the QUAREP-LiMi initiative and (4) proposes future steps that can be taken to improve the dissemination and acceptance of the proposed guidelines to manage QC. To summarize, the principal goal of the QUAREP-LiMi initiative is to improve the overall quality and reproducibility of light microscope image data by introducing broadly accepted standard practices and accurately captured image data metrics.


Asunto(s)
Microscopía , Estándares de Referencia , Reproducibilidad de los Resultados
5.
J Neurosci ; 39(28): 5606-5626, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31085610

RESUMEN

Myelination of axons facilitates the rapid propagation of electrical signals and the long-term integrity of axons. The ubiquitin-proteasome system is essential for proper protein homeostasis, which is particularly crucial for interactions of postmitotic cells. In our study, we examined how the E3 ubiquitin ligase FBXO7-SCF (SKP1, Cul1, F-box protein) expressed in myelinating cells affects the axon-myelin unit. Deletion of Fbxo7 in oligodendrocytes and Schwann cells in mice using the Cnp1-Cre driver line led to motor impairment due to hindlimb paresis. It did not result in apoptosis of myelinating cells, nor did it affect the proper myelination of axons or lead to demyelination. It however triggered axonal degeneration in the CNS and resulted in the severe degeneration of axons in the PNS, inducing a full-blown neuropathy. Both the CNS and PNS displayed inflammation, while the PNS was also characterized by fibrosis, massive infiltration of macrophages, and edema. Tamoxifen-induced deletion of Fbxo7, after myelination using the Plp1-CreERT2 line, led to a small number of degenerated axons and hence a very mild peripheral neuropathy. Interestingly, loss of Fbxo7 also resulted in reduced proteasome activity in Schwann cells but not in cerebellar granule neurons, indicating a specific sensitivity of the former cell type. Together, our results demonstrate an essential role for FBXO7 in myelinating cells to support associated axons, which is fundamental to the proper developmental establishment and the long-term integrity of the axon-myelin unit.SIGNIFICANCE STATEMENT The myelination of axons facilitates the fast propagation of electrical signals and the trophic support of the myelin-axon unit. Here, we report that deletion of Fbxo7 in myelinating cells in mice triggered motor impairment but had no effect on myelin biogenesis. Loss of Fbxo7 in myelinating glia, however, led to axonal degeneration in the CNS and peripheral neuropathy of the axonal type. In addition, we found that Schwann cells were particularly sensitive to Fbxo7 deficiency reflected by reduced proteasome activity. Based on these findings, we conclude that Fbxo7 is essential for the support of the axon-myelin unit and long-term axonal health.


Asunto(s)
Axones/metabolismo , Proteínas F-Box/genética , Vaina de Mielina/metabolismo , Enfermedades del Sistema Nervioso Periférico/metabolismo , Animales , Apoptosis , Axones/patología , Células Cultivadas , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Proteínas F-Box/metabolismo , Femenino , Eliminación de Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Vaina de Mielina/patología , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades del Sistema Nervioso Periférico/patología , Complejo de la Endopetidasa Proteasomal/metabolismo
6.
EMBO J ; 35(18): 2008-25, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27497298

RESUMEN

Mutations in the FBXO7 (PARK15) gene have been implicated in a juvenile form of parkinsonism termed parkinsonian pyramidal syndrome (PPS), characterized by Parkinsonian symptoms and pyramidal tract signs. FBXO7 (F-box protein only 7) is a subunit of the SCF (SKP1/cullin-1/F-box protein) E3 ubiquitin ligase complex, but its relevance and function in neurons remain to be elucidated. Here, we report that the E3 ligase FBXO7-SCF binds to and ubiquitinates the proteasomal subunit PSMA2. In addition, we show that FBXO7 is a proteasome-associated protein involved in proteasome assembly. In FBXO7 knockout mice, we find reduced proteasome activity and early-onset motor deficits together with premature death. In addition, we demonstrate that NEX (neuronal helix-loop-helix protein-1)-Cre-induced deletion of the FBXO7 gene in forebrain neurons or the loss of FBXO7 in tyrosine hydroxylase (TH)-positive neurons results in motor defects, reminiscent of the phenotype in PARK15 patients. Taken together, our study establishes a vital role for FBXO7 in neurons, which is required for proper motor control and accentuates the importance of FBXO7 in proteasome function.


Asunto(s)
Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Técnicas de Inactivación de Genes , Trastornos Parkinsonianos/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Animales , Ratones Noqueados , Procesamiento Proteico-Postraduccional , Ubiquitinación
10.
Acta Neuropathol ; 138(1): 147-161, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30919030

RESUMEN

Pelizaeus-Merzbacher disease (PMD) is an untreatable and fatal leukodystrophy. In a model of PMD with perturbed blood-brain barrier integrity, cholesterol supplementation promotes myelin membrane growth. Here, we show that in contrast to the mouse model, dietary cholesterol in two PMD patients did not lead to a major advancement of hypomyelination, potentially because the intact blood-brain barrier precludes its entry into the CNS. We therefore turned to a PMD mouse model with preserved blood-brain barrier integrity and show that a high-fat/low-carbohydrate ketogenic diet restored oligodendrocyte integrity and increased CNS myelination. This dietary intervention also ameliorated axonal degeneration and normalized motor functions. Moreover, in a paradigm of adult remyelination, ketogenic diet facilitated repair and attenuated axon damage. We suggest that a therapy with lipids such as ketone bodies, that readily enter the brain, can circumvent the requirement of a disrupted blood-brain barrier in the treatment of myelin disease.


Asunto(s)
Enfermedades Desmielinizantes/patología , Proteína Proteolipídica de la Mielina/metabolismo , Oligodendroglía/fisiología , Enfermedad de Pelizaeus-Merzbacher/patología , Animales , Dieta Cetogénica , Modelos Animales de Enfermedad , Ratones , Oligodendroglía/metabolismo , Organogénesis/fisiología
11.
J Neurosci ; 35(23): 8701-17, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-26063905

RESUMEN

The cerebellum is crucial for sensorimotor coordination. The cerebellar architecture not only requires proper development but also long-term integrity to ensure accurate functioning. Developmental defects such as impaired neuronal migration or neurodegeneration are thus detrimental to the cerebellum and can result in movement disorders including ataxias. In this study, we identify FBXO41 as a novel CNS-specific F-box protein that localizes to the centrosome and the cytoplasm of neurons and demonstrate that cytoplasmic FBXO41 promotes neuronal migration. Interestingly, deletion of the FBXO41 gene results in a severely ataxic gait in mice, which show delayed neuronal migration of granule neurons in the developing cerebellum in addition to deformities and degeneration of the mature cerebellum. We show that FBXO41 is a critical factor, not only for neuronal migration in the cerebellum, but also for its long-term integrity.


Asunto(s)
Encéfalo/patología , Movimiento Celular/genética , Proteínas F-Box/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Neuronas/patología , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología , Animales , Animales Recién Nacidos , Supervivencia Celular/genética , Células Cultivadas , Modelos Animales de Enfermedad , Embrión de Mamíferos , Proteínas F-Box/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Ratones , Ratones Transgénicos , Mutación/genética , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Fenotipo , Fracciones Subcelulares/metabolismo
12.
J Proteome Res ; 15(8): 2676-87, 2016 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-27345391

RESUMEN

The ability of somatosensory neurons to perceive mechanical stimuli relies on specialized mechanotransducing proteins and their molecular environment. Only recently has the identity of a major transducer of mechanical forces in vertebrates been revealed by the discovery of Piezo2. Further work has established its pivotal role for innocuous touch in mice. Therefore, Piezo2 offers a unique platform for the molecular investigation of somatosensory mechanosensation. We performed a mass spectrometry-based interactomics screen on native Piezo2 in somatosensory neurons of mouse dorsal root ganglia (DRG). Stringent and quantitative data analysis yielded the identity of 36 novel binding partners of Piezo2. The biological significance of this data set is reflected by functional experiments demonstrating a role for Pericentrin in modulating Piezo2 activity and membrane expression in somatosensory neurons. Collectively, our findings provide a framework for understanding Piezo2 physiology and serve as a rich resource for the molecular dissection of mouse somatosensation.


Asunto(s)
Antígenos/metabolismo , Canales Iónicos/metabolismo , Corteza Somatosensorial/citología , Animales , Antígenos/fisiología , Ganglios Espinales/citología , Mecanotransducción Celular , Ratones , Unión Proteica , Mapas de Interacción de Proteínas , Corteza Somatosensorial/metabolismo
13.
Biochim Biophys Acta ; 1838(3): 921-31, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24269539

RESUMEN

KV10.1 potassium channels are implicated in a variety of cellular processes including cell proliferation and tumour progression. Their expression in over 70% of human tumours makes them an attractive diagnostic and therapeutic target. Although their physiological role in the central nervous system is not yet fully understood, advances in their precise cell localization will contribute to the understanding of their interactions and function. We have determined the plasma membrane (PM) distribution of the KV10.1 protein in an enriched mouse brain PM fraction and its association with cholesterol- and sphingolipid-rich domains. We show that the KV10.1 channel has two different populations in a 3:2 ratio, one associated to and another excluded from Detergent Resistant Membranes (DRMs). This distribution of KV10.1 in isolated PM is cholesterol- and cytoskeleton-dependent since alteration of those factors changes the relationship to 1:4. In transfected HEK-293 cells with a mutant unable to bind Ca(2+)/CaM to KV10.1 protein, Kv10.1 distribution in DRM/non-DRM is 1:4. Mean current density was doubled in the cholesterol-depleted cells, without any noticeable effects on other parameters. These results demonstrate that recruitment of the KV10.1 channel to the DRM fractions involves its functional regulation.


Asunto(s)
Membrana Celular/metabolismo , Canales de Potasio Éter-A-Go-Go/metabolismo , Microdominios de Membrana/metabolismo , Neuronas/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Animales , Western Blotting , Membrana Celular/química , Colesterol/metabolismo , Citoesqueleto/metabolismo , Detergentes/metabolismo , Electrofisiología , Canales de Potasio Éter-A-Go-Go/química , Canales de Potasio Éter-A-Go-Go/genética , Femenino , Células HEK293 , Humanos , Microdominios de Membrana/química , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
14.
Neurobiol Dis ; 73: 377-87, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25447229

RESUMEN

l-3, 4-dihydroxyphenylalanine (L-DOPA) is the most effective treatment for Parkinson's disease but can induce debilitating abnormal involuntary movements (dyskinesia). Here we show that the development of L-DOPA-induced dyskinesia in the rat is accompanied by upregulation of an inflammatory cascade involving nitric oxide. Male Wistar rats sustained unilateral injections of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle. After three weeks animals started to receive daily treatment with L-DOPA (30 mg/kg plus benserazide 7.5 mg/kg, for 21 days), combined with an inhibitor of neuronal NOS (7-nitroindazole, 7-NI, 30 mg/kg/day) or vehicle (saline-PEG 50%). All animals treated with L-DOPA and vehicle developed abnormal involuntary movements, and this effect was prevented by 7-NI. L-DOPA-treated dyskinetic animals exhibited an increased striatal and pallidal expression of glial fibrillary acidic protein (GFAP) in reactive astrocytes, an increased number of CD11b-positive microglial cells with activated morphology, and the rise of cells positive for inducible nitric oxide-synthase immunoreactivity (iNOS). All these indexes of glial activation were prevented by 7-NI co-administration. These findings provide evidence that the development of L-DOPA-induced dyskinesia in the rat is associated with activation of glial cells that promote inflammatory responses. The dramatic effect of 7-NI in preventing this glial response points to an involvement of nitric oxide. Moreover, the results suggest that the NOS inhibitor prevents dyskinesia at least in part via inhibition of glial cell activation and iNOS expression. Our observations indicate nitric oxide synthase inhibitors as a therapeutic strategy for preventing neuroinflammatory and glial components of dyskinesia pathogenesis in Parkinson's disease.


Asunto(s)
Antiparkinsonianos/efectos adversos , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Discinesia Inducida por Medicamentos/metabolismo , Indazoles/farmacología , Levodopa/efectos adversos , Neuroglía/metabolismo , Fármacos Neuroprotectores/farmacología , Óxido Nítrico Sintasa/antagonistas & inhibidores , Óxido Nítrico/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Inflamación/inducido químicamente , Levodopa/administración & dosificación , Masculino , Ratas , Ratas Wistar , Regulación hacia Arriba
15.
J Cell Biol ; 223(1)2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38032389

RESUMEN

Nedd4-2 is an E3 ubiquitin ligase in which missense mutation is related to familial epilepsy, indicating its critical role in regulating neuronal network activity. However, Nedd4-2 substrates involved in neuronal network function have yet to be identified. Using mouse lines lacking Nedd4-1 and Nedd4-2, we identified astrocytic channel proteins inwardly rectifying K+ channel 4.1 (Kir4.1) and Connexin43 as Nedd4-2 substrates. We found that the expression of Kir4.1 and Connexin43 is increased upon conditional deletion of Nedd4-2 in astrocytes, leading to an elevation of astrocytic membrane ion permeability and gap junction activity, with a consequent reduction of γ-oscillatory neuronal network activity. Interestingly, our biochemical data demonstrate that missense mutations found in familial epileptic patients produce gain-of-function of the Nedd4-2 gene product. Our data reveal a process of coordinated astrocytic ion channel proteostasis that controls astrocyte function and astrocyte-dependent neuronal network activity and elucidate a potential mechanism by which aberrant Nedd4-2 function leads to epilepsy.


Asunto(s)
Astrocitos , Permeabilidad de la Membrana Celular , Conexina 43 , Ubiquitina-Proteína Ligasas Nedd4 , Canales de Potasio de Rectificación Interna , Animales , Humanos , Ratones , Conexina 43/genética , Mutación Missense , Proteostasis , Canales de Potasio de Rectificación Interna/genética , Ubiquitina-Proteína Ligasas Nedd4/genética , Epilepsia
16.
Glia ; 61(7): 1084-100, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23595698

RESUMEN

Neuron-glia interactions play a key role in maintaining and regulating the central nervous system. Glial cells are implicated in the function of dopamine neurons and regulate their survival and resistance to injury. Parkinson's disease is characterized by the loss of dopamine neurons in the substantia nigra pars compacta, decreased striatal dopamine levels and consequent onset of extrapyramidal motor dysfunction. Parkinson's disease is a common chronic, neurodegenerative disorder with no effective protective treatment. In the 6-OHDA mouse model of Parkinson's disease, doxycycline administered at a dose that both induces/represses conditional transgene expression in the tetracycline system, mitigates the loss of dopaminergic neurons in the substantia nigra compacta and nerve terminals in the striatum. This protective effect was associated with: (1) a reduction of microglia in normal mice as a result of doxycycline administration per se; (2) a decrease in the astrocyte and microglia response to the neurotoxin 6-OHDA in the globus pallidus and substantia nigra compacta, and (3) the astrocyte reaction in the striatum. Our results suggest that doxycycline blocks 6-OHDA neurotoxicity in vivo by inhibiting microglial and astrocyte expression. This action of doxycycline in nigrostriatal dopaminergic neuron protection is consistent with a role of glial cells in Parkinson's disease neurodegeneration. The neuroprotective effect of doxycycline may be useful in preventing or slowing the progression of Parkinson's disease and other neurodegenerative diseases linked to glia function.


Asunto(s)
Doxiciclina/uso terapéutico , Neuroglía/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , Adrenérgicos/toxicidad , Análisis de Varianza , Animales , Encéfalo/metabolismo , Encéfalo/patología , Ciclooxigenasa 2/metabolismo , Modelos Animales de Enfermedad , Proteína Ácida Fibrilar de la Glía/metabolismo , Antígeno de Macrófago-1/metabolismo , Masculino , Metaloproteinasa 3 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Oxidopamina/toxicidad , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/fisiopatología , Tirosina 3-Monooxigenasa/metabolismo
17.
JCI Insight ; 8(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37643024

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) progresses in an organ with a unique pH landscape, where the stroma acidifies after each meal. We hypothesized that disrupting this pH landscape during PDAC progression triggers pancreatic stellate cells (PSCs) and cancer-associated fibroblasts (CAFs) to induce PDAC fibrosis. We revealed that alkaline environmental pH was sufficient to induce PSC differentiation to a myofibroblastic phenotype. We then mechanistically dissected this finding, focusing on the involvement of the Na+/H+ exchanger NHE1. Perturbing cellular pH homeostasis by inhibiting NHE1 with cariporide partially altered the myofibroblastic PSC phenotype. To show the relevance of this finding in vivo, we targeted NHE1 in murine PDAC (KPfC). Indeed, tumor fibrosis decreased when mice received the NHE1-inhibitor cariporide in addition to gemcitabine treatment. Moreover, the tumor immune infiltrate shifted from granulocyte rich to more lymphocytic. Taken together, our study provides mechanistic evidence on how the pancreatic pH landscape shapes pancreatic cancer through tuning PSC differentiation.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Ratones , Animales , Células Estrelladas Pancreáticas/patología , Línea Celular Tumoral , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Fenotipo , Homeostasis , Fibrosis , Neoplasias Pancreáticas
18.
iScience ; 26(4): 106350, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37009224

RESUMEN

SUMOylation is an evolutionarily conserved eukaryotic posttranslational protein modification with broad biological relevance. Differentiating between the major small ubiquitin-like modifier (SUMO) paralogs and uncovering paralog-specific functions in vivo has long been very difficult. To overcome this problem, we generated His6-HA-Sumo2 and HA-Sumo2 knockin mouse lines, expanding upon our existing His6-HA-Sumo1 mouse line, to establish a "toolbox" for Sumo1-Sumo2 comparisons in vivo. Leveraging the specificity of the HA epitope, we performed whole-brain imaging and uncovered regional differences between Sumo1 and Sumo2 expression. At the subcellular level, Sumo2 was specifically detected in extranuclear compartments, including synapses. Immunoprecipitation coupled with mass spectrometry identified shared and specific neuronal targets of Sumo1 and Sumo2. Target validation using proximity ligation assays provided further insight into the subcellular distribution of neuronal Sumo2-conjugates. The mouse models and associated datasets provide a powerful framework to determine the native SUMO "code" in cells of the central nervous system.

19.
Neuron ; 57(3): 378-92, 2008 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-18255031

RESUMEN

Pyramidal neurons of the neocortex can be subdivided into two major groups: deep- (DL) and upper-layer (UL) neurons. Here we report that the expression of the AT-rich DNA-binding protein Satb2 defines two subclasses of UL neurons: UL1 (Satb2 positive) and UL2 (Satb2 negative). In the absence of Satb2, UL1 neurons lose their identity and activate DL- and UL2-specific genetic programs. UL1 neurons in Satb2 mutants fail to migrate to superficial layers and do not contribute to the corpus callosum but to the corticospinal tract, which is normally populated by DL axons. Ctip2, a gene required for the formation of the corticospinal tract, is ectopically expressed in all UL1 neurons in the absence of Satb2. Satb2 protein interacts with the Ctip2 genomic region and controls chromatin remodeling at this locus. Satb2 therefore is required for the initiation of the UL1-specific genetic program and for the inactivation of DL- and UL2-specific genes.


Asunto(s)
Proteínas de Unión a la Región de Fijación a la Matriz/fisiología , Mitosis/fisiología , Neocórtex/citología , Neuronas/fisiología , Factores de Transcripción/fisiología , Animales , Carbocianinas/metabolismo , Diferenciación Celular , Inmunoprecipitación de Cromatina , Ensayo de Cambio de Movilidad Electroforética , Electroporación/métodos , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Neocórtex/embriología , Neocórtex/crecimiento & desarrollo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA