Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(50): e2211690119, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36469778

RESUMEN

In the zebrafish retina, Müller glia (MG) can regenerate retinal neurons lost to injury or disease. Even though zebrafish MG share structure and function with those of mammals, only in zebrafish do MG function as retinal stem cells. Previous studies suggest dying neurons, microglia/macrophage, and T cells contribute to MG's regenerative response [White et al., Proc. Natl. Acad. Sci. U.S.A. 114, E3719 (2017); Hui et al., Dev. Cell 43, 659 (2017)]. Although MG end-feet abut vascular endothelial (VE) cells to form the blood-retina barrier, a role for VE cells in retina regeneration has not been explored. Here, we report that MG-derived Vegfaa and Pgfa engage Flt1 and Kdrl receptors on VE cells to regulate MG gene expression, Notch signaling, proliferation, and neuronal regeneration. Remarkably, vegfaa and pgfa expression is regulated by microglia/macrophages, while Notch signaling in MG is regulated by a Vegf-dll4 signaling system in VE cells. Thus, our studies link microglia/macrophage, MG, and VE cells in a multicomponent signaling pathway that controls MG reprogramming and proliferation.


Asunto(s)
Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales Modificados Genéticamente , Células Endoteliales/metabolismo , Regeneración Nerviosa/fisiología , Neuroglía/metabolismo , Retina/metabolismo , Regeneración/fisiología , Transducción de Señal , Proliferación Celular/fisiología , Células Ependimogliales/metabolismo , Mamíferos/metabolismo
2.
iScience ; 23(2): 100817, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32004993

RESUMEN

Tgf-ß signaling is a major antiproliferative pathway governing different biological functions, including cellular reprogramming. Upon injury, Müller glial cells of zebrafish retina reprogram to form progenitors (MGPCs) essential for regeneration. Here, the significance of Tgf-ß signaling for inducing MGPCs is explored. Notably, Tgf-ß signaling not only performs a pro-proliferative function but also is necessary for the expression of several regeneration-associated, essential transcription factor genes such as ascl1a, lin28a, oct4, sox2, and zebs and various microRNAs, namely, miR-200a, miR-200b, miR-143, and miR-145 during different phases of retinal regeneration. This study also found the indispensable role played by Mmp2/Mmp9 in the efficacy of Tgf-ß signaling. Furthermore, the Tgf-ß signaling is essential to cause cell cycle exit of MGPCs towards later phases of regeneration. Finally, the Delta-Notch signaling in collaboration with Tgf-ß signaling regulates the critical factor, Her4.1. This study provides novel insights into the biphasic roles of Tgf-ß signaling in zebrafish during retinal regeneration.

3.
J Cell Biol ; 218(2): 489-507, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30606747

RESUMEN

Cellular reprogramming leading to induction of Muller glia-derived progenitor cells (MGPCs) with stem cell characteristics is essential for zebrafish retina regeneration. Although several regeneration-specific genes are characterized, the significance of MGPC-associated Mycb induction remains unknown. Here, we show that early expression of Mycb induces expression of genes like ascl1a, a known activator of lin28a in MGPCs. Notably, mycb is simultaneously activated by Ascl1a and repressed by Insm1a in regenerating retina. Here, we unravel a dual role of Mycb in lin28a expression, both as an activator through Ascl1a in MGPCs and a repressor in combination with Hdac1 in neighboring cells. Myc inhibition reduces the number of MGPCs and abolishes normal regeneration. Myc in collaboration with Hdac1 inhibits her4.1, an effector of Delta-Notch signaling. Further, we also show the repressive role of Delta-Notch signaling on lin28a expression in post-injured retina. Our studies reveal mechanistic understanding of Myc pathway during zebrafish retina regeneration, which could pave way for therapeutic intervention during mammalian retina regeneration.


Asunto(s)
Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas de Unión al ARN/metabolismo , Regeneración/fisiología , Retina/fisiología , Transducción de Señal/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Ependimogliales/citología , Células Ependimogliales/metabolismo , Regulación de la Expresión Génica/fisiología , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas de Unión al ARN/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/genética
4.
Life Sci Alliance ; 2(5)2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31594822

RESUMEN

Octamer-binding transcription factor 4 (Oct4, also known as Pou5F3) is an essential pluripotency-inducing factor, governing a plethora of biological functions during cellular reprogramming. Retina regeneration in zebrafish involves reprogramming of Müller glia (MG) into a proliferating population of progenitors (MGPCs) with stem cell-like characteristics, along with up-regulation of pluripotency-inducing factors. However, the significance of Oct4 during retina regeneration remains elusive. In this study, we show an early panretinal induction of Oct4, which is essential for MG reprogramming through the regulation of several regeneration-associated factors such as Ascl1a, Lin28a, Sox2, Zeb, E-cadherin, and various miRNAs, namely, let-7a, miR-200a/miR-200b, and miR-143/miR-145 We also show the crucial roles played by Oct4 during cell cycle exit of MGPCs in collaboration with members of nucleosome remodeling and deacetylase complex such as Hdac1. Notably, Oct4 regulates Tgf-ß signaling negatively during MG reprogramming, and positively to cause cycle exit of MGPCs. Our study reveals unique mechanistic involvement of Oct4, during MG reprogramming and cell cycle exit in zebrafish, which may also account for the inefficient retina regeneration in mammals.


Asunto(s)
Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Regeneración , Retina/lesiones , Retina/fisiología , Proteínas de Pez Cebra/metabolismo , Animales , Ciclo Celular , Proliferación Celular , Reprogramación Celular , Técnicas de Inactivación de Genes , Redes Reguladoras de Genes , MicroARNs/metabolismo , Neuroglía/citología , Neuroglía/fisiología , Factor 3 de Transcripción de Unión a Octámeros/genética , Células Madre/citología , Células Madre/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética
5.
Cell Rep ; 23(5): 1409-1423, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29719254

RESUMEN

Upon injury, Müller glia cells of the zebrafish retina reprogram themselves to progenitor cells with stem cell characteristics. This necessity for retina regeneration is often compromised in mammals. We explored the significance of developmentally inevitable Sonic hedgehog signaling and found its necessity in MG reprogramming during retina regeneration. We report on stringent translational regulation of sonic hedgehog, smoothened, and patched1 by let-7 microRNA, which is regulated by Lin28a, in Müller glia (MG)-derived progenitor cells (MGPCs). We also show Shh-signaling-mediated induction of Ascl1 in mouse and zebrafish retina. Moreover, Shh-signaling-dependent regulation of matrix metalloproteinase9, in turn, regulates Shha levels and genes essential for retina regeneration, such as lin28a, zic2b, and foxn4. These observations were further confirmed through whole-retina RNA-sequencing (RNA-seq) analysis. This mechanistic gene expression network could lead to a better understanding of retina regeneration and, consequently, aid in designing strategies for therapeutic intervention in human retinal diseases.


Asunto(s)
Redes Reguladoras de Genes/fisiología , Proteínas Hedgehog/metabolismo , MicroARNs/metabolismo , Regeneración/fisiología , Retina , Transducción de Señal/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Células Ependimogliales/citología , Células Ependimogliales/metabolismo , Proteínas Hedgehog/genética , Humanos , MicroARNs/genética , Retina/citología , Retina/metabolismo , Células Madre/citología , Células Madre/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/genética
6.
iScience ; 7: 68-84, 2018 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-30267687

RESUMEN

Histone deacetylases (Hdacs) play significant roles in cellular homeostasis and tissue differentiation. Hdacs are well characterized in various systems for their physiological and epigenetic relevance. However, their significance during retina regeneration remains unclear. Here we show that inhibition of Hdac1 causes a decline in regenerative ability, and injury-dependent regulation of hdacs is essential for regulating regeneration-associated genes like ascl1a, lin28a, and repressors like her4.1 at the injury site. We show selective seclusion of Hdac1 from the proliferating Müller glia-derived progenitor cells (MGPCs) and its upregulation in the neighboring cells. Hdacs negatively regulate her4.1, which also represses lin28a and essential cytokines to control MGPCs proliferation. Interestingly, Hdacs' inhibition reversibly blocks regeneration through the repression of critical cytokines and other regeneration-specific genes, which is also revealed by whole-retina RNA sequence analysis. Our study shows mechanistic understanding of the Hdac pathway during zebrafish retina regeneration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA