Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Ther ; 31(7): 2042-2055, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37016576

RESUMEN

We reported previously that ß-site amyloid precursor protein cleaving enzyme (BACE1) is strongly expressed in the normal retina and that BACE1-/- mice develop pathological phenotypes associated with age-related macular degeneration (AMD). BACE1 expression is increased within the neural retina and retinal pigment epithelium (RPE) in AMD donor eyes suggesting that increased BACE1 is compensatory. We observed that AAV-mediated BACE1 overexpression in the RPE was maintained up to 6 months after AAV1-BACE1 administration. No significant changes in normal mouse visual function or retinal morphology were observed with low-dose vector while the high-dose vector demonstrated some early pathology which regressed with time. No increase in ß-amyloid was observed. BACE1 overexpression in the RPE of the superoxide dismutase 2 knockdown (SOD2 KD) mouse, which exhibits an AMD-like phenotype, prevented loss of retinal function and retinal pathology, and this was sustained out to 6 months. Furthermore, BACE1 overexpression was able to inhibit oxidative stress, microglial changes, and loss of RPE tight junction integrity (all features of AMD) in SOD2 KD mice. In conclusion, BACE1 plays a key role in retina/RPE homeostasis, and BACE1 overexpression offers a novel therapeutic target in the treatment of AMD.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide , Degeneración Macular , Animales , Ratones , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/genética , Degeneración Macular/genética , Degeneración Macular/prevención & control , Retina/metabolismo , Epitelio Pigmentado de la Retina/metabolismo
2.
Adv Exp Med Biol ; 854: 333-9, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26427429

RESUMEN

It has long been established that ß-Secretase (BACE) plays a critical role in the formation of amyloid plaques in Alzheimer's Disease patients, but it is only recently that the importance of ß-secretases in retinal pathophysiology has been recognized. BACE expression is elevated in response to stress, and downregulation results in lysosomal abnormalities and mitochondrial changes. Inhibition of BACE can lead to reduced retinal function, retinal thinning, lipofuscin accumulation and vascular dysfunction in mice. Furthermore, BACE inhibition accelerates choroidal neovascularization (CNV) in mice. We propose that BACE plays an important role in retinal homeostasis and that BACE upregulation in response to stress is a protective measure.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Homeostasis , Retina/enzimología , Animales , Retinopatía Diabética/enzimología , Retinopatía Diabética/fisiopatología , Modelos Animales de Enfermedad , Humanos , Degeneración Macular/enzimología , Degeneración Macular/fisiopatología , Ratones , Retina/fisiopatología
3.
Antioxidants (Basel) ; 10(10)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34679674

RESUMEN

BACE1 is a key enzyme facilitating the generation of neurotoxic ß-amyloid (Aß) peptide. However, given that BACE1 has multiple substrates we explored the importance of BACE1 in the maintenance of retinal pigment epithelial (RPE) cell homeostasis under oxidative stress. Inhibition of BACE1 reduced mitochondrial membrane potential, increased mitochondrial fragmentation, and increased cleaved caspase-3 expression in cells under oxidative stress. BACE1 inhibition also resulted in significantly lower levels of mitochondrial fusion proteins OPA1 and MFN1 suggesting a higher rate of mitochondrial fission while increasing the levels of mitophagic proteins Parkin and PINK1 and autophagosome numbers. In contrast, BACE2 had minimal effect on cellular response to oxidative stress. In summary, our results emphasize the importance of BACE1 in augmenting cellular defense against oxidative stress by protecting mitochondrial dynamics.

4.
Cells ; 9(4)2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32272782

RESUMEN

Retinal homeostasis is under both diurnal and circadian regulation. We sought to investigate the diurnal expression of autophagy proteins in normal rodent retina and to determine if this is impaired in diabetic retinopathy. C57BL/6J mice and Bio-Breeding Zucker (BBZ) rats were maintained under a 12h/12h light/dark cycle and eyes, enucleated over a 24 h period. Eyes were also collected from diabetic mice with two or nine-months duration of type 1 diabetes (T1D) and Bio-Breeding Zucker diabetic rat (BBZDR/wor rats with 4-months duration of type 2 diabetes (T2D). Immunohistochemistry was performed for the autophagy proteins Atg7, Atg9, LC3 and Beclin1. These autophagy proteins (Atgs) were abundantly expressed in neural retina and endothelial cells in both mice and rats. A differential staining pattern was observed across the retinas which demonstrated a distinctive diurnal rhythmicity. All Atgs showed localization to retinal blood vessels with Atg7 being the most highly expressed. Analysis of the immunostaining demonstrated distinctive diurnal rhythmicity, of which Atg9 and LC3 shared a biphasic expression cycle with the highest level at 8:15 am and 8:15 pm. In contrast, Beclin1 revealed a 24-h cycle with the highest level observed at midnight. Atg7 was also on a 24-h cycle with peak expression at 8:15am, coinciding with the first peak expression of Atg9 and LC3. In diabetic animals, there was a dramatic reduction in all four Atgs and the distinctive diurnal rhythmicity of these autophagy proteins was significantly impaired and phase shifted in both T1D and T2D animals. Restoration of diurnal rhythmicity and facilitation of autophagy protein expression may provide new treatment strategies for diabetic retinopathy.


Asunto(s)
Autofagia/genética , Trastornos Cronobiológicos/complicaciones , Ritmo Circadiano/genética , Complicaciones de la Diabetes/genética , Retinopatía Diabética/genética , Retina/patología , Animales , Femenino , Humanos , Masculino , Ratones , Ratas , Ratas Endogámicas BB
5.
Hum Gene Ther Methods ; 29(1): 44-59, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29160102

RESUMEN

In lentiviral vector (LV) applications where transient transgene expression is sufficient, integrase-defective lentiviral vectors (IDLVs) are beneficial for reducing the potential for off-target effects associated with insertional mutagenesis. It was previously demonstrated that human RPE65 mRNA expression from an integrating lentiviral vector (ILV) induces endogenous Rpe65 and Cralbp mRNA expression in murine bone marrow-derived cells (BMDCs), initiating programming of the cells to retinal pigment epithelium (RPE)-like cells. These cells regenerate RPE in retinal degeneration models when injected systemically. As transient expression of RPE65 is sufficient to activate endogenous RPE-associated genes for programming BMDCs, use of an ILV is an unnecessary risk. In this study, an IDLV expressing RPE65 (IDLV3-RPE65) was generated. Transduction with IDLV3-RPE65 is less efficient than the integrating vector (ILV3-RPE65). Therefore, IDLV3-RPE65 transduction was enhanced with a combination of preloading 20 × -concentrated viral supernatant on RetroNectin at a multiplicity of infection of 50 and transduction of BMDCs by low-speed centrifugation. RPE65 mRNA levels increased from ∼12-fold to ∼25-fold (p < 0.05) after modification of the IDLV3-RPE65 transduction protocol, achieving expression similar to the ∼27-fold (p < 0.05) increase observed with ILV3-RPE65. Additionally, the study shows that the same preparation of RetroNectin can be used to coat up to three wells with no reduction in transduction. Critically, IDLV3-RPE65 transduction initiates endogenous Rpe65 mRNA expression in murine BMDCs and Cralbp/CRALBP mRNA in both murine and human BMDCs, similar to expression observed in ILV3-RPE65-transduced cells. Systemic administration of ILV3-RPE65 or IDLV3-RPE65 programmed BMDCs in a mouse model of retinal degeneration is sufficient to retain visual function and reduce retinal degeneration compared to mice receiving no treatment or naïve BMDC. It is concluded that IDLV3-RPE65 is appropriate for programming BMDCs to RPE-like cells.


Asunto(s)
Células de la Médula Ósea/metabolismo , Vectores Genéticos , Integrasas/genética , Lentivirus , Transducción Genética/métodos , Proteínas Virales/genética , Animales , Células de la Médula Ósea/citología , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Lentivirus/genética , Lentivirus/metabolismo , Ratones , Ratones Transgénicos
6.
ACS Chem Biol ; 13(1): 45-52, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29193961

RESUMEN

The standard-of-care therapeutics for the treatment of ocular neovascular diseases like wet age-related macular degeneration (AMD) are biologics targeting vascular endothelial growth factor signaling. There are currently no FDA approved small molecules for treating these blinding eye diseases. Therefore, therapeutic agents with novel mechanisms are critical to complement or combine with existing approaches. Here, we identified soluble epoxide hydrolase (sEH), a key enzyme for epoxy fatty acid metabolism, as a target of an antiangiogenic homoisoflavonoid, SH-11037. SH-11037 inhibits sEH in vitro and in vivo and docks to the substrate binding cleft in the sEH hydrolase domain. sEH levels and activity are up-regulated in the eyes of a choroidal neovascularization (CNV) mouse model. sEH is overexpressed in human wet AMD eyes, suggesting that sEH is relevant to neovascularization. Known sEH inhibitors delivered intraocularly suppressed CNV. Thus, by dissecting a bioactive compound's mechanism, we identified a new chemotype for sEH inhibition and characterized sEH as a target for blocking the CNV that underlies wet AMD.


Asunto(s)
Cromonas/farmacología , Epóxido Hidrolasas/antagonistas & inhibidores , Epóxido Hidrolasas/metabolismo , Terapia Molecular Dirigida/métodos , Fenilalanina/análogos & derivados , Degeneración Macular Húmeda/metabolismo , Inhibidores de la Angiogénesis/farmacología , Animales , Sitios de Unión , Neovascularización Coroidal/tratamiento farmacológico , Neovascularización Coroidal/metabolismo , Cromonas/química , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Epóxido Hidrolasas/química , Ácidos Grasos Insaturados/metabolismo , Humanos , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Fenilalanina/química , Fenilalanina/farmacología , Dominios Proteicos , Proteómica/métodos , Degeneración Macular Húmeda/patología
8.
PLoS One ; 12(2): e0171940, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28222108

RESUMEN

p62 is a scaffolding adaptor implicated in the clearance of protein aggregates by autophagy. Reactive oxygen species (ROS) can either stimulate or inhibit NFκB-mediated gene expression influencing cellular fate. We studied the effect of hydrogen peroxide (H2O2)-mediated oxidative stress and NFκB signaling on p62 expression in the retinal pigment epithelium (RPE) and investigated its role in regulation of autophagy and RPE survival against oxidative damage. Cultured human RPE cell line ARPE-19 and primary human adult and fetal RPE cells were exposed to H2O2-induced oxidative stress. The human apolipoprotein E4 targeted-replacement (APOE4) mouse model of AMD was used to study expression of p62 and other autophagy proteins in the retina. p62, NFκB p65 (total, phosphorylated, nuclear and cytoplasmic) and ATG10 expression was assessed by mRNA and protein analyses. Cellular ROS and mitochondrial superoxide were measured by CM-H2DCFDA and MitoSOX staining respectively. Mitochondrial viability was determined using MTT activity. qPCR-array system was used to investigate autophagic genes affected by p62. Nuclear and cytoplasmic levels of NFκB p65 were evaluated after cellular fractionation by Western blotting. We report that p62 is up-regulated in RPE cells under H2O2-induced oxidative stress and promotes autophagic activity. Depletion of endogenous p62 reduces autophagy by downregulation of ATG10 rendering RPE more susceptible to oxidative damage. NFκB p65 phosphorylation at Ser-536 was found to be critical for p62 upregulation in response to oxidative stress. Proteasome inhibition by H2O2 causes p62-NFκB signaling as antioxidant pre-treatment reversed p62 expression and p65 phosphorylation when RPE was challenged by H2O2 but not when by Lactacystin. p62 protein but not RNA levels are elevated in APOE4-HFC AMD mouse model, suggesting reduction of autophagic flux in disease conditions. Our findings suggest that p62 is necessary for RPE cytoprotection under oxidative stress and functions, in part, by modulating ATG10 expression. NFκB p65 activity may be a critical upstream initiator of p62 expression in RPE cells under oxidative stress.


Asunto(s)
Autofagia/fisiología , Supervivencia Celular/fisiología , FN-kappa B/fisiología , Estrés Oxidativo/fisiología , Proteínas de Unión al ARN/fisiología , Epitelio Pigmentado de la Retina/fisiología , Proteína Sequestosoma-1/fisiología , Animales , Western Blotting , Línea Celular , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Degeneración Macular/etiología , Degeneración Macular/fisiopatología , Ratones , Fosforilación , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Superóxidos/metabolismo , Regulación hacia Arriba
9.
Autophagy ; 11(6): 939-53, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26075877

RESUMEN

Autophagy regulates cellular homeostasis and response to environmental stress. Within the retinal pigment epithelium (RPE) of the eye, the level of autophagy can change with both age and disease. The purpose of this study is to determine the relationship between reduced autophagy and age-related degeneration of the RPE. The gene encoding RB1CC1/FIP200 (RB1-inducible coiled-coil 1), a protein essential for induction of autophagy, was selectively knocked out in the RPE by crossing Best1-Cre mice with mice in which the Rb1cc1 gene was flanked with Lox-P sites (Rb1cc1(flox/flox)). Ex vivo and in vivo analyses, including western blot, immunohistochemistry, transmission electron microscopy, fundus photography, optical coherence tomography, fluorescein angiography, and electroretinography were performed to assess the structure and function of the retina as a function of age. Deletion of Rb1cc1 resulted in multiple autophagy defects within the RPE including decreased conversion of LC3-I to LC3-II, accumulation of autophagy-targeted precursors, and increased numbers of mitochondria. Age-dependent degeneration of the RPE occurred, with formation of atrophic patches, subretinal migration of activated microglial cells, subRPE deposition of inflammatory and oxidatively damaged proteins, subretinal drusenoid deposits, and occasional foci of choroidal neovascularization. There was secondary loss of photoreceptors overlying the degenerated RPE and reduction in the electroretinogram. These observations are consistent with a critical role of autophagy in the maintenance of normal homeostasis in the aging RPE, and indicate that disruption of autophagy leads to retinal phenotypes associated with age-related degeneration.


Asunto(s)
Autofagia/genética , Epitelio/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Epitelio Pigmentado de la Retina/metabolismo , Animales , Proteínas Relacionadas con la Autofagia , Electrorretinografía/métodos , Ratones , Mitocondrias/genética , Eliminación de Secuencia/genética
10.
Autophagy ; 10(11): 1989-2005, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25484094

RESUMEN

Autophagic dysregulation has been suggested in a broad range of neurodegenerative diseases including age-related macular degeneration (AMD). To test whether the autophagy pathway plays a critical role to protect retinal pigmented epithelial (RPE) cells against oxidative stress, we exposed ARPE-19 and primary cultured human RPE cells to both acute (3 and 24 h) and chronic (14 d) oxidative stress and monitored autophagy by western blot, PCR, and autophagosome counts in the presence or absence of autophagy modulators. Acute oxidative stress led to a marked increase in autophagy in the RPE, whereas autophagy was reduced under chronic oxidative stress. Upregulation of autophagy by rapamycin decreased oxidative stress-induced generation of reactive oxygen species (ROS), whereas inhibition of autophagy by 3-methyladenine (3-MA) or by knockdown of ATG7 or BECN1 increased ROS generation, exacerbated oxidative stress-induced reduction of mitochondrial activity, reduced cell viability, and increased lipofuscin. Examination of control human donor specimens and mice demonstrated an age-related increase in autophagosome numbers and expression of autophagy proteins. However, autophagy proteins, autophagosomes, and autophagy flux were significantly reduced in tissue from human donor AMD eyes and 2 animal models of AMD. In conclusion, our data confirm that autophagy plays an important role in protection of the RPE against oxidative stress and lipofuscin accumulation and that impairment of autophagy is likely to exacerbate oxidative stress and contribute to the pathogenesis of AMD.


Asunto(s)
Autofagia , Degeneración Macular/patología , Estrés Oxidativo , Epitelio Pigmentado de la Retina/citología , Adenina/análogos & derivados , Adenina/química , Animales , Apolipoproteína E4/genética , Supervivencia Celular , Regulación de la Expresión Génica , Glutatión/metabolismo , Humanos , Peróxido de Hidrógeno/química , Lipofuscina/química , Potenciales de la Membrana , Ratones , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo , Retina/metabolismo
11.
PLoS One ; 9(4): e93965, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24713821

RESUMEN

We hypothesized that endothelial progenitor cells derived from individuals with diabetes would exhibit functional defects including inability to respond to hypoxia and altered paracrine/autocrine function that would impair the angiogenic potential of these cells. Circulating mononuclear cells isolated from diabetic (n = 69) and nondiabetic (n = 46) individuals were used to grow endothelial colony forming cells (ECFC), early endothelial progenitor cells (eEPCs) and isolate CD34+ cells. ECFCs and eEPCs were established from only 15% of the diabetic individuals tested thus directing our main effort toward examination of CD34+ cells. CD34+ cells were plated in basal medium to obtain cell-free conditioned medium (CM). In CM derived from CD34+ cells of diabetic individuals (diabetic-CM), the levels of stem cell factor, hepatocyte growth factor, and thrombopoietin were lower, and IL-1ß and tumor necrosis factor (TNFα) levels were higher than CM derived from nondiabetic individuals (nondiabetic-CM). Hypoxia did not upregulate HIF1α in CD34+ cells of diabetic origin. Migration and proliferation of nondiabetic CD34+ cells toward diabetic-CM were lower compared to nondiabetic-CM. Attenuation of pressure-induced constriction, potentiation of bradykinin relaxation, and generation of cGMP and cAMP in arterioles were observed with nondiabetic-CM, but not with diabetic-CM. Diabetic-CM failed to induce endothelial tube formation from vascular tissue. These results suggest that diabetic subjects with microvascular complications exhibit severely limited capacity to generate ex-vivo expanded endothelial progenitor populations and that the vasoreparative dysfunction observed in diabetic CD34+ cells is due to impaired autocrine/paracrine function and reduced sensitivity to hypoxia.


Asunto(s)
Antígenos CD34/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Endoteliales/metabolismo , Hipoxia/metabolismo , Neovascularización Fisiológica/fisiología , Células Madre/metabolismo , Adulto , Anciano , Células Cultivadas , Factor de Crecimiento de Hepatocito/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Factor de Células Madre/metabolismo , Trombopoyetina/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
12.
PLoS One ; 7(4): e34468, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22509307

RESUMEN

Age-related macular degeneration (AMD), a major cause of blindness in the elderly, is associated with oxidative stress, lipofuscin accumulation and retinal degeneration. The aim of this study was to determine if a 5-HT(1A) receptor agonist can reduce lipofuscin accumulation, reduce oxidative damage and prevent retinal cell loss both in vitro and in vivo. Autophagy-derived and photoreceptor outer segment (POS)-derived lipofuscin formation was assessed using FACS analysis and confocal microscopy in cultured retinal pigment epithelial (RPE) cells in the presence or absence of the 5-HT(1A) receptor agonist, 8-OH DPAT. 8-OH DPAT treatment resulted in a dose-dependent reduction in both autophagy- and POS-derived lipofuscin compared to control. Reduction in autophagy-induced lipofuscin was sustained for 4 weeks following removal of the drug. The ability of 8-OH DPAT to reduce oxidative damage following exposure to 200 µM H(2)O(2) was assessed. 8-OH DPAT reduced superoxide generation and increased mitochondrial superoxide dismutase (MnSOD) levels and the ratio of reduced glutathione to the oxidized form of glutathione in H(2)O(2)-treated cells compared to controls and protected against H(2)O(2)-initiated lipid peroxidation, nitrotyrosine levels and mitochondrial damage. SOD2 knockdown mice, which have an AMD-like phenotype, received daily subcutaneous injections of either saline, 0.5 or 5.0 mg/kg 8-OH DPAT and were evaluated at monthly intervals. Systemic administration of 8-OH DPAT improved the electroretinogram response in SOD2 knockdown eyes of mice compared to knockdown eyes receiving vehicle control. There was a significant increase in the ONL thickness in mice treated with 8-OH DPAT at 4 months past the time of MnSOD knockdown compared to untreated controls together with a 60% reduction in RPE lipofuscin. The data indicate that 5-HT(1A) agonists can reduce lipofuscin accumulation and protect the retina from oxidative damage and mitochondrial dysfunction. 5-HT(1A) receptor agonists may have potential as therapeutic agents in the treatment of retinal degenerative disease.


Asunto(s)
8-Hidroxi-2-(di-n-propilamino)tetralin/farmacología , Lipofuscina/metabolismo , Estrés Oxidativo/efectos de los fármacos , Receptores de Serotonina/metabolismo , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/metabolismo , Agonistas de Receptores de Serotonina/farmacología , Anciano , Anciano de 80 o más Años , Animales , Antioxidantes/metabolismo , Línea Celular , Citoprotección/efectos de los fármacos , Humanos , Degeneración Macular/metabolismo , Degeneración Macular/patología , Degeneración Macular/fisiopatología , Ratones , Persona de Mediana Edad , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Epitelio Pigmentado de la Retina/citología , Superóxidos/metabolismo , Visión Ocular/efectos de los fármacos , Visión Ocular/fisiología
13.
In Silico Biol ; 6(1-2): 43-7, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16789912

RESUMEN

Availability of genome sequences of pathogens has provided a tremendous amount of information that can be useful in drug target and vaccine target identification. One of the recently adopted strategies is based on a subtractive genomics approach, in which the subtraction dataset between the host and pathogen genome provides information for a set of genes that are likely to be essential to the pathogen but absent in the host. This approach has been used successfully in recent times to identify essential genes in Pseudomonas aeruginosa. We have used the same methodology to analyse the whole genome sequence of the human gastric pathogen Helicobacter pylori. Our analysis revealed that out of the 1590 coding sequences of the pathogen, 40 represent essential genes that have no human homolog. We have further analysed these 40 genes by the protein sequence databases to list some 10 genes whose products are possibly exposed on the pathogen surface. This preliminary work reported here identifies a small subset of the Helicobacter proteome that might be investigated further for identifying potential drug and vaccine targets in this pathogen.


Asunto(s)
Genoma Bacteriano , Infecciones por Helicobacter/tratamiento farmacológico , Helicobacter pylori/genética , Antibacterianos/uso terapéutico , Proteínas Bacterianas/genética , Biología Computacional , Bases de Datos de Proteínas , Helicobacter pylori/patogenicidad , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA