Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 38(1): e23359, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38102969

RESUMEN

Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by severe pruritus and eczematous skin lesions. Although IL-31, a type 2 helper T (Th2)-derived cytokine, is important to the development of pruritus and skin lesions in AD, the blockade of IL-31 signaling does not improve the skin lesions in AD. Oncostatin M (OSM), a member of IL-6 family of cytokines, plays important roles in the regulation of various inflammatory responses through OSM receptor ß subunit (OSMRß), a common receptor subunit for OSM and IL-31. However, the effects of OSM on the pathogenesis of AD remain to be elucidated. When AD model mice were treated with OSM, skin lesions were exacerbated and IL-4 production was increased in the lymph nodes. Next, we investigated the effects of the monoclonal antibody (mAb) against OSMRß on the pathogenesis of AD. Treatment with the anti-OSMRß mAb (7D2) reduced skin severity score in AD model mice. In addition to skin lesions, scratching behavior was decreased by 7D2 mAb with the reduction in the number of OSMRß-positive neurons in the dorsal root ganglia of AD model mice. 7D2 mAb also reduced the serum concentration of IL-4, IL-13, and IgE as well as the gene expressions of IL-4 and IL-13 in the lymph nodes of AD model mice. Blockade of both IL-31 and OSM signaling is suggested to suppress both pruritus and Th2 responses, resulting in the improvement of skin lesions in AD. The anti-OSMRß mAb may be a new therapeutic candidate for the treatment of AD.


Asunto(s)
Dermatitis Atópica , Humanos , Ratones , Animales , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/metabolismo , Interleucina-13 , Interleucina-4/genética , Piel/metabolismo , Citocinas/metabolismo , Prurito/tratamiento farmacológico
2.
Biotechnol Bioeng ; 121(4): 1178-1190, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38184815

RESUMEN

Recent advancements in bioengineering have introduced potential alternatives to liver transplantation via the development of self-assembled liver organoids, derived from human-induced pluripotent stem cells (hiPSCs). However, the limited maturity of the tissue makes it challenging to implement this technology on a large scale in clinical settings. In this study, we developed a highly efficient method for generating functional liver organoids from hiPSC-derived carboxypeptidase M liver progenitor cells (CPM+ LPCs), using a microwell structure, and enhanced maturation through direct oxygenation in oxygen-permeable culture plates. We compared the morphology, gene expression profile, and function of the liver organoid with those of cells cultured under conventional conditions using either monolayer or spheroid culture systems. Our results revealed that liver organoids generated using polydimethylsiloxane-based honeycomb microwells significantly exhibited enhanced albumin secretion, hepatic marker expression, and cytochrome P450-mediated metabolism. Additionally, the oxygenated organoids consisted of both hepatocytes and cholangiocytes, which showed increased expression of bile transporter-related genes as well as enhanced bile transport function. Oxygen-permeable polydimethylsiloxane membranes may offer an efficient approach to generating highly mature liver organoids consisting of diverse cell populations.


Asunto(s)
Células Madre Pluripotentes Inducidas , Metaloendopeptidasas , Humanos , Oxígeno/metabolismo , Diferenciación Celular , Hígado/metabolismo , Técnicas de Cultivo de Célula/métodos , Organoides/metabolismo , Dimetilpolisiloxanos , Proteínas Ligadas a GPI
3.
Drug Metab Dispos ; 51(2): 174-182, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36379710

RESUMEN

Knockout (KO) of mouse Cyp3a genes increases the expression of hepatic CYP2C enzymes, which can metabolize triazolam, a typical substrate of human CYP3A. There is still marked formation of 1'-hydroxytriazolam in Cyp3a-KO (3aKO) mice after triazolam dosing. Here, we generated a new model of humanized CYP3A (hCYP3A) mice with a double-KO background of Cyp3a and Cyp2c genes (2c3aKO), and we examined the metabolic profiles of triazolam in wild-type (WT), 2c3aKO, and hCYP3A/2c3aKO mice in vitro and in vivo In vitro studies using liver microsomes showed that the formation of 1'-hydroxytriazolam in 2c3aKO mice was less than 8% of that in WT mice. The formation rate of 1'-hydroxytriazolam in hCYP3A/2c3aKO mice was eightfold higher than that in 2c3aKO mice. In vivo studies showed that area under the curve (AUC) of 1'-hydroxytriazolam in 2c3aKO mice was less than 3% of that in WT mice. The AUC of 1'-hydroxytriazolam in hCYP3A/2c3aKO mice was sixfold higher than that in 2c3aKO mice. These results showed that formation of 1'-hydroxytriazolam was significantly decreased in 2c3aKO mice. Metabolic functions of human CYP3A enzymes were distinctly found in hCYP3A mice with the 2c3aKO background. Moreover, hCYP3A/2c3aKO mice treated with clobazam showed human CYP3A-mediated formation of desmethylclobazam and prolonged elimination of desmethylclobazam, which is found in poor metabolizers of CYP2C19. The novel hCYP3A mouse model without mouse Cyp2c and Cyp3a genes (hCYP3A/2c3aKO) is expected to be useful to evaluate human CYP3A-mediated metabolism in vivo SIGNIFICANT STATEMENT: Humanized CYP3A (hCYP3A/2c3aKO) mice with a background of double knockout (KO) for mouse Cyp2c and Cyp3a genes were generated. Although CYP2C enzymes played a compensatory role in the metabolism of triazolam to 1'-hydroxytriazolam in the previous hCYP3A/3aKO mice with Cyp2c genes, the novel hCYP3A/2c3aKO mice clearly showed functions of human CYP3A enzymes introduced by chromosome engineering technology.


Asunto(s)
Triazolam , Humanos , Ratones , Animales , Triazolam/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Clobazam , Ratones Noqueados , Microsomas Hepáticos/metabolismo
4.
Biotechnol Bioeng ; 120(8): 2345-2356, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37401657

RESUMEN

Hepatic stellate cells (HSCs) play a crucial role in liver fibrosis by producing excessive extracellular matrix (ECM) following chronic inflammation. However, studying HSC function has been challenging due to the limited availability of primary human quiescent HSCs (qHSCs) in vitro, and the fact that primary qHSCs quickly activate when cultured on plastic plates. Advances in stem cell technology have allowed for the generation of qHSCs from human induced pluripotent stem cells (hiPSCs) with the potential to provide an unlimited source of cells. However, differentiated quiescent-like HSCs (iqHSCs) also activate spontaneously on conventional plastic plates. In this study, we generated iqHSCs from hiPSCs and developed a culture method to maintain such iqHSCs in a lowly activated state for up to 5 days by optimizing their physical culture microenvironment. We observed that three-dimensional (3D) culture of iqHSCs in soft type 1 collagen hydrogels significantly inhibited their spontaneous activation in vitro while maintaining their ability to convert to activated state. Activation of iqHSC was successfully modeled by stimulating them with the fibrotic cytokine TGFß1. Hence, our culture method can be used to generate HSCs with functions comparable to those in a healthy liver, facilitating the development of accurate in vitro liver models for identifying novel therapeutic agents.


Asunto(s)
Células Estrelladas Hepáticas , Células Madre Pluripotentes Inducidas , Humanos , Células Estrelladas Hepáticas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Cirrosis Hepática/metabolismo , Hígado/metabolismo , Diferenciación Celular
5.
Hepatol Res ; 53(7): 661-674, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36866738

RESUMEN

AIM: Hepatic zonation is a physiological feature of the liver, known to be key in the regulation of the metabolism of nutrients and xenobiotics and the biotransformation of numerous substances. However, the reproduction of this phenomenon remains challenging in vitro as only part of the processes involved in the orchestration and maintenance of zonation are fully understood. The recent advances in organ-on-chip technologies, which allow for the integration of multicellular 3D tissues in a dynamic microenvironment, could offer solutions for the reproduction of zonation within a single culture vessel. METHODS: An in-depth analysis of zonation-related mechanisms observed during the coculture of human-induced pluripotent stem cell (hiPSC)-derived carboxypeptidase M-positive liver progenitor cells and hiPSC-derived liver sinusoidal endothelial cells within a microfluidic biochip was carried out. RESULTS: Hepatic phenotypes were confirmed in terms of albumin secretion, glycogen storage, CYP450 activity, and expression of specific endothelial markers such as PECAM1, RAB5A, and CD109. Further characterization of the patterns observed in the comparison of the transcription factor motif activities, the transcriptomic signature, and the proteomic profile expressed at the inlet and the outlet of the microfluidic biochip confirmed the presence of zonation-like phenomena within the biochips. In particular, differences related to Wnt/ß-catenin, transforming growth factor-ß, mammalian target of rapamycin, hypoxia-inducible factor-1, and AMP-activated protein kinase signaling, to the metabolism of lipids, and cellular remolding were observed. CONCLUSIONS: The present study shows the interest in combining cocultures of hiPSC-derived cellular models and microfluidic technologies for reproducing in vitro complex mechanisms such as liver zonation and further incites the use of those solutions for accurate reproduction of in vivo situations.

6.
Differentiation ; 120: 28-35, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34229994

RESUMEN

The liver is a complex organ composed of several cell types organized hierarchically. Among these, liver sinusoidal endothelial cells (LSECs) are specialized vascular cells known to interact with hepatocytes and hepatic stellate cells (HSCs), and to be involved in the regulation of important hepatic processes in healthy and pathological situations. Protocols for the differentiation of LSECs from human induced pluripotent stem cells, hiPSCs, have been proposed and in-depth analysis by transcriptomic profiling of those cells has been performed. In the present work, an extended analysis of those cells in terms of proteome and metabolome has been implemented. The proteomic analysis confirmed the expression of important endothelial markers and pathways. Among them, the expression of patterns typical of LSECs such as PECAM1, VWF, LYVE1, STAB1 (endothelial markers), CDH13, CDH5, CLDN5, ICAM1, MCAM-CD146, ICAM2, ESAM (endothelial cytoskeleton), NOSTRIN, NOS3 (Nitric Oxide endothelial ROS), ESM1, ENG, MMRN2, THBS1, ANGPT2 (angiogenesis), CD93, MRC1 (mannose receptor), CLEC14A (C-type lectin), CD40 (antigen), and ERG (transcription factor) was highlighted. Besides, the pathway analysis revealed the enrichment of the endocytosis, Toll-like receptor, Nod-like receptor, Wnt, Apelin, VEGF, cGMP-PCK, and PPAR related signaling pathways. Other important pathways such as vasopressin regulated water reabsorption, fluid shear stress, relaxin signaling, and renin secretion were also highlighted. At confluence, the metabolome profile appeared consistent with quiescent endothelial cell patterns. The integration of both proteome and metabolome datasets revealed a switch from fatty acid synthesis in undifferentiated hiPSCs to a fatty oxidation in LSECs and activation of the pentose phosphate pathway and polyamine metabolism in hiPSCs-derived LSECs. In conclusion, the comparison between the signature of LSECs differentiated following the protocol described in this work, and data found in the literature confirmed the particular relevance of these cells for future in vitro applications.


Asunto(s)
Diferenciación Celular , Células Endoteliales/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Metaboloma , Proteoma , Células Cultivadas , Células Endoteliales/citología , Endotelio Vascular/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Hígado/irrigación sanguínea , Hígado/citología
7.
Genes Cells ; 25(5): 302-311, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32065490

RESUMEN

Transplantation of pancreatic islets is an effective therapy for severe type 1 diabetes. As donor shortage is a major problem for this therapy, attempts have been made to produce a large number of pancreatic islets from human pluripotent stem cells (hPSCs). However, as the differentiation of hPSCs to pancreatic islets requires multiple and lengthy processes using various expensive cytokines, the process is variable, low efficiency and costly. Therefore, it would be beneficial if islet progenitors could be expanded. Neurogenin3 (NGN3)-expressing pancreatic endocrine progenitor (EP) cells derived from hPSCs exhibited the ability to differentiate into pancreatic islets while their cell cycle was arrested. By using a lentivirus vector, we introduced several growth-promoting genes into NGN3-expressing EP cells. We found that SV40LT expression induced proliferation of the EP cells but reduced the expression of endocrine lineage-commitment factors, NGN3, NEUROD1 and NKX2.2, resulting in the suppression of islet differentiation. By using the Cre-loxP system, we removed SV40LT after the expansion, leading to re-expression of endocrine-lineage commitment genes and differentiation into functional pancreatic islets. Thus, our findings will pave a way to generate a large quantity of functional pancreatic islets through the expansion of EP cells from hPSCs.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Homeodominio/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Islotes Pancreáticos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Pez Cebra/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/genética , Humanos , Células Madre Pluripotentes Inducidas/citología , Islotes Pancreáticos/citología , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares , Factores de Transcripción , Proteínas de Pez Cebra/genética
8.
Biotechnol Bioeng ; 118(10): 3716-3732, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33404112

RESUMEN

Maturation of human-induced pluripotent stem cells (hiPSCs)-derived hepatocytes-like cells (HLCs) toward a complete hepatocyte phenotype remains a challenge as primitiveness patterns are still commonly observed. In this study, we propose a modified differentiation protocol for those cells which includes a prematuration in Petri dishes and a maturation in microfluidic biochip. For the first time, a large range of biomolecular families has been extracted from the same sample to combine transcriptomic, proteomic, and metabolomic analysis. After integration, these datasets revealed specific molecular patterns and highlighted the hepatic regeneration profile in biochips. Overall, biochips exhibited processes of cell proliferation and inflammation (via TGFB1) coupled with anti-fibrotic signaling (via angiotensin 1-7, ATR-2, and MASR). Moreover, cultures in this condition displayed physiological lipid-carbohydrate homeostasis (notably via PPAR, cholesterol metabolism, and bile synthesis) coupled with cell respiration through advanced oxidative phosphorylation (through the overexpression of proteins from the third and fourth complex). The results presented provide an original overview of the complex mechanisms involved in liver regeneration using an advanced in vitro organ-on-chip technology.


Asunto(s)
Diferenciación Celular , Genómica , Hepatocitos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Regeneración Hepática , Hígado/metabolismo , Proteómica , Humanos
9.
Xenobiotica ; 51(7): 764-770, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34013847

RESUMEN

It is important to predict drug-drug interactions via inhibition of intestinal cytochrome P450 3A (CYP3A) which is a determinant of bioavailability of orally administered CYP3A substrates. However, inhibitory effects of macrolide antibiotics on CYP3A-mediated metabolism are not entirely identical between humans and rodents.We investigated the effects of macrolide antibiotics, clarithromycin and erythromycin, on in vitro and in vivo metabolism of triazolam, a CYP3A substrate, in CYP3A-humanised mice generated by using a mouse artificial chromosome vector carrying a human CYP3A gene.Metabolic activities of triazolam were inhibited by macrolide antibiotics in liver and intestine microsomes of CYP3A-humanised mice.The area under the plasma concentration-time curve ratios of 4-hydroxytriazolam to triazolam after oral dosing of triazolam were significantly decreased by multiple administration of macrolide antibiotics. The plasma concentrations ratios of α-hydroxytriazolam and 4-hydroxytriazolam to triazolam in portal blood were significantly decreased by multiple administration of clarithromycin in CYP3A-humanised mice.These results suggest that intestinal CYP3A activity was inhibited by macrolide antibiotics in CYP3A-humanised mice in vitro and in vivo. The plasma concentrations of triazolam and its metabolites in the portal blood of CYP3A-humanised mice would be useful for direct evaluation of intestinal CYP3A-mediated drug-drug interactions.


Asunto(s)
Citocromo P-450 CYP3A , Sistema Enzimático del Citocromo P-450 , Antibacterianos/farmacología , Citocromo P-450 CYP3A/genética , Interacciones Farmacológicas , Humanos , Intestinos , Macrólidos/farmacología , Microsomas Hepáticos
10.
Differentiation ; 112: 17-26, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31869687

RESUMEN

Human induced pluripotent stem cells (hiPSCs) are potentially an invaluable source of cells for regenerative medicine, disease modeling and drug discovery. However, the differentiation of hiPSCs into fully functional hepatocytes remains a major challenge. Despite the importance of the information carried by metabolomes, the exploitation of metabolomics for characterizing and understanding hiPSC differentiation remains largely unexplored. Here, to increase knowledge of hiPSC maturation into mature hepatocytes, we investigated their metabolomics profiles during sequential step-by-step differentiation: definitive endoderm (DE), specification into hepatocytes (HB-pro (hepatoblast progenitors)), progenitor hepatocytes (Pro-HEP) and mature hepatocyte-like cells (HLCs). Metabolomics analysis illustrated a switch from glycolysis-based respiration in DE step to oxidative phosphorylation in HLCs step. DE was characterized by fatty acid beta oxidation, sorbitol metabolism and pentose phosphate pathway, and glutamine and glucose metabolisms as various potential energy sources. The complex lipid metabolism switch was monitored via the reduction of lipid production from DE to HLCs step, whereas high glycerol production occurred mainly in HLCs. The nitrogen cycle, via urea production, was also a typical mechanism revealed in HLCs step. Our analysis may contribute to better understanding of differentiation and suggest new targets for improving iPSC maturation into functional hepatocytes.


Asunto(s)
Diferenciación Celular/genética , Hepatocitos/citología , Células Madre Pluripotentes Inducidas/citología , Metaboloma/genética , Endodermo/crecimiento & desarrollo , Endodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Glucosa/genética , Glucosa/metabolismo , Glutamina/genética , Glutamina/metabolismo , Glucólisis/genética , Hepatocitos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Metabolismo de los Lípidos/genética , Metabolómica/métodos , Fosforilación Oxidativa
11.
Differentiation ; 114: 36-48, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32563741

RESUMEN

The capability to produce and maintain functional human adult hepatocytes remains one of the major challenges for the use of in-vitro models toward liver cell therapy and industrial drug-screening applications. Among the suggested strategies to solve this issue, the use of human-induced pluripotent stem cells (hiPSCs), differentiated toward hepatocyte-like cells (HLCs) is promising. In this work, we propose a 31-day long protocol, that includes a final 14-day long phase of oncostatin treatment, as opposed to a 7-day treatment which led to the formation of a hepatic tissue functional for CYP1A2, CYP2B6, CYP2C8, CYP2D6, and CYP3A4. The production of albumin, as well as bile acid metabolism and transport, were also detected. Transcriptome profile comparisons and liver transcription factors (TFs) motif dynamics revealed increased expression of typical hepatic markers such as HNF1A and of important metabolic markers like PPARA. The performed analysis has allowed for the extraction of potential targets and pathways which would allow enhanced hepatic maturation in-vitro. From this investigation, NRF1 and SP3 appeared as transcription factors of importance. Complex epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) patterns were also observed during the differentiation process. Moreover, whole transcriptome analysis highlighted a response typical of the one observed in liver regeneration and hepatocyte proliferation. While a complete maturation of hepatocytes was yet to be obtained, the results presented in this work provide new insights into the process of liver development and highlight potential targets aimed to improve in-vitro liver regeneration.


Asunto(s)
Diferenciación Celular/genética , Hepatocitos/citología , Células Madre Pluripotentes Inducidas/citología , Regeneración Hepática , Hígado/crecimiento & desarrollo , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP2C8/genética , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP3A/genética , Evaluación Preclínica de Medicamentos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Hígado/citología , Hígado/efectos de los fármacos , Factor Nuclear 1 de Respiración/genética , Oncostatina M/farmacología , Factor de Transcripción Sp3/genética , Transcriptoma/efectos de los fármacos
12.
Genes Dev ; 27(2): 169-81, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23322300

RESUMEN

The liver is a unique organ with a remarkably high potential to regenerate upon injuries. In severely damaged livers where hepatocyte proliferation is impaired, facultative liver progenitor cells (LPCs) proliferate and are assumed to contribute to regeneration. An expansion of LPCs is often observed in patients with various types of liver diseases. However, the underlying mechanism of LPC activation still remains largely unknown. Here we show that a member of the fibroblast growth factor (FGF) family, FGF7, is a critical regulator of LPCs. Its expression was induced concomitantly with LPC response in the liver of mouse models as well as in the serum of patients with acute liver failure. Fgf7-deficient mice exhibited markedly depressed LPC expansion and higher mortality upon toxin-induced hepatic injury. Transgenic expression of FGF7 in vivo led to the induction of cells with characteristics of LPCs and ameliorated hepatic dysfunction. We revealed that Thy1(+) mesenchymal cells produced FGF7 and appeared in close proximity to LPCs, implicating a role for those cells as the functional LPC niche in the regenerating liver. These findings provide new insights into the cellular and molecular basis for LPC regulation and identify FGF7 as a potential therapeutic target for liver diseases.


Asunto(s)
Factor 7 de Crecimiento de Fibroblastos/metabolismo , Hepatocitos/citología , Regeneración Hepática/fisiología , Transducción de Señal , Células Madre/citología , Animales , Proliferación Celular , Factor 7 de Crecimiento de Fibroblastos/genética , Hepatocitos/metabolismo , Hepatopatías/fisiopatología , Ratones , Células Madre/metabolismo , Antígenos Thy-1/metabolismo , Regulación hacia Arriba
13.
Biochem Biophys Res Commun ; 524(2): 465-471, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32008745

RESUMEN

Laminin is a family of basement membrane proteins, whose selective and spatiotemporal expression profiles are linked to their various functions in development, maintenance, and functional regulation of different tissues. In the liver, α1-and α5-containing laminin isoforms have been documented to be critically involved in the developmental process of the epithelial tissue of the bile duct. However, possible roles of other laminin isoforms in bile duct formation and function remain elusive. Here, we evaluated public single-cell RNA sequencing databases on human liver cells to reveal expression landscape of laminin genes, and found that genes for laminin-332 subunits were conjointly expressed in the EPCAM+ biliary epithelial cell population. Expression of the ß3 and γ2 subunit genes was restricted to biliary epithelial cells in the liver and, remarkably, showed apparent heterogeneity among them. We confirmed the heterogeneous nature of the laminin-ß3 expression in murine livers, which was firmly related to morphological substructures in the biliary epithelium. Finally, we generated the liver epithelial tissue-specific laminin- ß3 knockout mice and found that this laminin subunit was dispensable under physiological conditions. Together, our present findings have identified the ß3 subunit and the related laminin-332 isoform as useful markers and potentially important regulatory molecules for future understanding of pathophysiology in the hepatobiliary system.


Asunto(s)
Moléculas de Adhesión Celular/análisis , Hígado/metabolismo , Animales , Conductos Biliares/metabolismo , Moléculas de Adhesión Celular/genética , Células Epiteliales/metabolismo , Femenino , Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Kalinina
14.
J Biol Chem ; 293(17): 6214-6229, 2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29523685

RESUMEN

Under various conditions of liver injury, the intrahepatic biliary epithelium undergoes dynamic tissue expansion and remodeling, a process known as ductular reaction. Mouse models defective in inducing such a tissue-remodeling process are more susceptible to liver injury, suggesting a crucial role of this process in liver regeneration. However, the molecular mechanisms regulating the biliary epithelial cell (BEC) dynamics in the ductular reaction remain largely unclear. Here, we demonstrate that the transcription factor Krüppel-like factor 5 (Klf5) is highly enriched in mouse liver BECs and plays a key role in regulating the ductular reaction, specifically under cholestatic injury conditions. Although mice lacking Klf5 in the entire liver epithelium, including both hepatocytes and BECs (Klf5-LKO (liver epithelial-specific knockout) mice), did not exhibit any apparent phenotype in the hepatobiliary system under normal conditions, they exhibited significant defects in biliary epithelial tissue remodeling upon 3,5-diethoxycarbonyl-1,4-dihydrocollidine-induced cholangitis, concomitantly with exacerbated cholestasis and reduced survival rate. In contrast, mice lacking Klf5 solely in hepatocytes did not exhibit any such phenotypes, confirming Klf5's specific role in BECs. RNA-sequencing analyses of BECs isolated from the Klf5-LKO mouse livers revealed that the Klf5 deficiency primarily affected expression of cell cycle-related genes. Moreover, immunostaining analysis with the proliferation marker Ki67 disclosed that the Klf5-LKO mice had significantly reduced BEC proliferation levels upon injury. These results indicate that Klf5 plays a critical role in the ductular reaction and biliary epithelial tissue expansion and remodeling by inducing BEC proliferation and thereby contributing to liver regeneration.


Asunto(s)
Conductos Biliares Intrahepáticos/metabolismo , Colestasis/metabolismo , Células Epiteliales/metabolismo , Factores de Transcripción de Tipo Kruppel/biosíntesis , Regeneración Hepática , Hígado/metabolismo , Animales , Conductos Biliares Intrahepáticos/patología , Ciclo Celular/efectos de los fármacos , Colestasis/inducido químicamente , Colestasis/genética , Colestasis/patología , Células Epiteliales/patología , Regulación de la Expresión Génica/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , Factores de Transcripción de Tipo Kruppel/genética , Hígado/lesiones , Hígado/patología , Ratones , Ratones Noqueados , Piridinas/toxicidad
15.
Am J Pathol ; 188(9): 2059-2073, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30126547

RESUMEN

Peribiliary glands (PBGs) are accessory glands with mucinous and serous acini in the biliary tree. The PBG is composed of a heterogeneous cell population, such as mucus- and pancreatic enzyme-producing epithelial cells, whereas it constitutes niches for multipotential stem/progenitor cells in the human extrahepatic bile duct (EHBD). By contrast, the nature of PBGs in the mouse EHBD remains unclear. Our aim was to establish a method for isolating and characterizing PBG-constituting cells in the mouse EHBD. We found that trophoblast cell surface protein 2 (Trop2) was expressed in the luminal epithelium of mouse EHBD exclusively, but not in the PBG. On the basis of the differential expression profile of Trop2, lumen-forming biliary epithelial cells (LBECs) and PBG-constituting epithelial cells (PBECs) were separately isolated for further characterization. Gene expression analysis revealed that the isolated mouse PBECs expressed several marker genes related to human PBGs. In the colony formation assay, PBECs showed significantly higher colony formation capacity than LBECs. In the organoid formation assay, PBECs formed cystic organoid with LBEC-like phenotype. Interestingly, PBECs proliferated, accompanied by reexpression of Trop2 in vivo after bile duct ligation. Furthermore, the unique expression profile of Trop2 was conserved in human EHBD. Our findings indicate that Trop2 is a useful marker in investigating the pathophysiological roles and characteristics of mouse and human PBGs in biliary diseases.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Conductos Biliares Extrahepáticos/citología , Moléculas de Adhesión Celular/metabolismo , Glándulas Endocrinas/citología , Células Madre/citología , Animales , Conductos Biliares Extrahepáticos/metabolismo , Neoplasias del Sistema Biliar/metabolismo , Neoplasias del Sistema Biliar/patología , Proliferación Celular , Células Cultivadas , Glándulas Endocrinas/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Fenotipo , Células Madre/metabolismo
16.
Hepatology ; 67(1): 296-312, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28779552

RESUMEN

Fibrosis is an important wound-healing process in injured tissues, but excessive fibrosis is often observed in patients with chronic inflammation. Although oncostatin M (OSM) has been reported to play crucial roles for recovery from acute liver injury by inducing tissue inhibitor of metalloproteinase 1 (Timp1) expression, the role of OSM in chronic liver injury (CLI) is yet to be elucidated. Here, we show that OSM exerts powerful fibrogenic activity by regulating macrophage activation during CLI. Genetic ablation of the OSM gene alleviated fibrosis in a mouse model of chronic hepatitis. Conversely, continuous expression of OSM in a normal mouse liver by hydrodynamic tail vein injection (HTVi) induced severe fibrosis without necrotic damage of hepatocytes, indicating that OSM is involved in the fundamental process of liver fibrosis (LF) after hepatitis. In a primary coculture of hepatic stellate cells (HSCs) and hepatic macrophages (HMs), OSM up-regulated the expression of fibrogenic factors, such as transforming growth factor-ß and platelet-derived growth factor in HMs, while inducing Timp1 expression in HSCs, suggesting the synergistic roles of OSM for collagen deposition in the liver. Fluorescence-activated cell sorting analyses using OSM-HTVi and OSM knockout mice have revealed that bone-marrow-derived monocyte/macrophage are responsive to OSM for profibrotic activation. Furthermore, depletion or blocking of HMs by administration of clodronate liposome or chemokine inhibitor prevented OSM-induced fibrosis. CONCLUSION: OSM plays a crucial role in LF by coordinating the phenotypic change of HMs and HSCs. Our data suggest that OSM is a promising therapeutic target for LF. (Hepatology 2018;67:296-312).


Asunto(s)
Células Estrelladas Hepáticas/efectos de los fármacos , Hepatocitos/patología , Cirrosis Hepática/patología , Regeneración Hepática/fisiología , Oncostatina M/metabolismo , Análisis de Varianza , Animales , Biomarcadores/metabolismo , Células Cultivadas , Cromatografía Líquida de Alta Presión/métodos , Modelos Animales de Enfermedad , Células Estrelladas Hepáticas/metabolismo , Hepatocitos/metabolismo , Humanos , Cirrosis Hepática/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Distribución Aleatoria , Medición de Riesgo , Estadísticas no Paramétricas
17.
Biotechnol Bioeng ; 116(7): 1762-1776, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30883676

RESUMEN

In the present study, we evaluated the performance of different protocols for the hepatic differentiation of human-induced pluripotent stem cells (hiPSCs) in microfluidic biochips. Strategies for complete and partial on-chip differentiation were tested. Unlike full on-chip differentiation, the transfer of iPSCs from Petri dishes to biochips during the differentiation process produced a heterogeneous tissue with enhanced hepatic features compared with control cultures in Petri dishes. The tissue in biochips was constituted of cells expressing either stabilin-1 or albumin, while no stabilin-1 was detected in controls. Functional analysis also revealed double the production rate for albumin in biochips (about 2,000 ng per day per 106 cells). Besides this, tissues obtained in biochips and controls exhibited the metabolism of a specific bile acid. Whole transcriptome analysis with nanoCAGE exhibited a differential expression of 302 genes between control and biochip cultures and a higher degree of hepatic differentiation in biochips, together with increased promoter motif activity for typical liver transcription factors such as estrogen related receptor alpha ( ESRRA), hepatic nuclear factor 1 ( HNF1A), hepatic nuclear factor 4 ( HNF4A), transcription factor 4 ( TCF4), and CCAAT enhancer binding protein alpha ( CEBPA). Gene set enrichment analysis identified several pathways related to the extracellular matrix, tissue reorganization, hypoxia-inducible transcription factor, and glycolysis that were differentially modulated in biochip cultures. However, the presence of CK19/ALB-positive cells and the ɑ-fetoprotein levels measured in the cultures still reflect primitive differentiation patterns. Overall, we identified key parameters for improved hepatic differentiation on-chip, including the maturation stage of hepatic progenitors, inoculation density, adhesion time, and perfusion flow rate. Optimization of these parameters further led to establish a protocol for reproducible differentiation of hiPSCs into hepatocyte-like cells in microfluidic biochips with significant improvements over Petri dish cultures.


Asunto(s)
Diferenciación Celular , Hepatocitos , Células Madre Pluripotentes Inducidas , Hígado , Técnicas Analíticas Microfluídicas , Nicho de Células Madre , Regulación de la Expresión Génica , Células Hep G2 , Hepatocitos/citología , Hepatocitos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Hígado/citología , Hígado/metabolismo , Factores de Transcripción/metabolismo
18.
Proc Natl Acad Sci U S A ; 113(36): 10139-44, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27551096

RESUMEN

Natural killer (NK) cells are known to be activated by Th1-type cytokines, such as IL-2, -12, or -18, and they secrete a large amount of IFN-γ that accelerates Th1-type responses. However, the roles of NK cells in Th2-type responses have remained unclear. Because IL-4 acts as an initiator of Th2-type responses, we examined the characteristics of NK cells in mice overexpressing IL-4. In this study, we report that IL-4 overexpression induces distinctive characteristics of NK cells (B220(high)/CD11b(low)/IL-18Rα(low)), which are different from mature conventional NK (cNK) cells (B220(low)/CD11b(high)/IL-18Rα(high)). IL-4 overexpression induces proliferation of tissue-resident macrophages, which contributes to NK cell proliferation via production of IL-15. These IL-4-induced NK cells (IL4-NK cells) produce higher levels of IFN-γ, IL-10, and GM-CSF, and exhibit high cytotoxicity compared with cNK cells. Furthermore, incubation of cNK cells with IL-15 and IL-4 alters their phenotype to that similar to IL4-NK cells. Finally, parasitic infection, which typically causes strong Th2-type responses, induces the development of NK cells with characteristics similar to IL4-NK cells. These IL4-NK-like cells do not develop in IL-4Rα KO mice by parasitic infection. Collectively, these results suggest a novel role of IL-4 in immune responses through the induction of the unique NK cells.


Asunto(s)
Citotoxicidad Inmunológica , Interleucina-15/inmunología , Interleucina-4/inmunología , Células Asesinas Naturales/inmunología , Activación de Linfocitos , Infecciones por Strongylida/inmunología , Animales , Antígeno CD11b/genética , Antígeno CD11b/inmunología , Proliferación Celular , Regulación de la Expresión Génica , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Interferón gamma/genética , Interferón gamma/inmunología , Interleucina-10/genética , Interleucina-10/inmunología , Interleucina-15/genética , Interleucina-15/farmacología , Interleucina-4/genética , Interleucina-4/farmacología , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/parasitología , Antígenos Comunes de Leucocito/genética , Antígenos Comunes de Leucocito/inmunología , Macrófagos/inmunología , Macrófagos/parasitología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Nippostrongylus/inmunología , Nippostrongylus/patogenicidad , Receptores de Interleucina-18/genética , Receptores de Interleucina-18/inmunología , Receptores de Interleucina-4/deficiencia , Receptores de Interleucina-4/genética , Receptores de Interleucina-4/inmunología , Transducción de Señal , Infecciones por Strongylida/genética , Infecciones por Strongylida/parasitología
19.
Genomics ; 109(1): 16-26, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27913249

RESUMEN

We have compared the transcriptomic profiles of human induced pluripotent stem cells after their differentiation in hepatocytes like cells in plates and microfluidic biochips. The biochips provided a 3D and dynamic support during the cell differentiation when compared to the 2D static cultures in plates. The microarray have demonstrated the up regulation of important pathway related to liver development and maturation during the culture in biochips. Furthermore, the results of the transcriptomic profile, coupled with immunostaining, and RTqPCR analysis have shown typical biomarkers illustrating the presence of responders of biliary like cells, hepatocytes like cells, and endothelial like cells. However, the overall tissue still presented characteristic of immature and foetal patterns. Nevertheless, the biochip culture provided a specific micro-environment in which a complex multicellular differentiation toward liver could be oriented.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas/fisiología , Hígado/citología , Transcriptoma , Reactores Biológicos , Células Cultivadas , Humanos , Hígado/fisiología , Análisis por Micromatrices
20.
Hepatology ; 64(1): 175-88, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26926046

RESUMEN

UNLABELLED: The intrahepatic bile duct (IHBD) is a highly organized tubular structure consisting of cholangiocytes, biliary epithelial cells, which drains bile produced by hepatocytes into the duodenum. Although several models have been proposed, it remains unclear how the three-dimensional (3D) IHBD network develops during liver organogenesis. Using 3D imaging techniques, we demonstrate that the continuous luminal network of IHBDs is established by 1 week after birth. Beyond this stage, the IHBD network consists of large ducts running along portal veins (PVs) and small ductules forming a mesh-like network around PVs. By analyzing embryonic and neonatal livers, we found that newly differentiated cholangiocytes progressively form a continuous and homogeneous luminal network. Elongation of this continuous network toward the liver periphery was attenuated by a potent Notch-signaling inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester. Subsequent to this first step, the fine homogenous network is reorganized into the mature hierarchical network consisting of large ducts and small ductules. Between E17 and E18, when the homogenous network is radically reorganized into the mature hierarchical network, bile canaliculi rapidly extend and bile flow into IHBDs may increase. When formation of bile canaliculi was blocked between E16 and E18 by a multidrug resistance protein 2 inhibitor (benzbromarone), the structural rearrangement of IHBDs was significantly suppressed. CONCLUSION: Establishment of the mature IHBD network consists of two sequential events: (1) formation of the continuous luminal network regulated by the Notch-signaling pathway and (2) dynamic rearrangement of the homogeneous network into the hierarchical network induced by increased bile flow resulting from the establishment of hepatobiliary connections. (Hepatology 2016;64:175-188).


Asunto(s)
Conductos Biliares Intrahepáticos/embriología , Animales , Canalículos Biliares , Conductos Biliares Intrahepáticos/irrigación sanguínea , Conductos Biliares Intrahepáticos/citología , Conductos Biliares Intrahepáticos/crecimiento & desarrollo , Diferenciación Celular , Femenino , Imagenología Tridimensional , Ratones Endogámicos C57BL , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA