Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Appl Environ Microbiol ; 78(7): 2446-8, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22247167

RESUMEN

Infectious pancreatic necrosis virus (IPNV) (serotype Sp) was exposed to temperatures between 60 and 90°C in a medium mimicking the water-soluble phase of hydrolyzed fish by-products. D values ranged from 290 to 0.5 min, and the z value was approximately 9.8°C. Addition of formic acid to create a pH 4 medium did not enhance heat inactivation. Predicted inactivation effects at different temperature-time combinations are provided.


Asunto(s)
Medios de Cultivo/química , Productos Pesqueros/virología , Industria de Procesamiento de Alimentos/normas , Calor , Virus de la Necrosis Pancreática Infecciosa/crecimiento & desarrollo , Peptonas , Inactivación de Virus , Acuicultura/estadística & datos numéricos , Hidrólisis , Virus de la Necrosis Pancreática Infecciosa/aislamiento & purificación , Cloruro de Sodio , Solubilidad , Agua
2.
Animals (Basel) ; 11(12)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34944298

RESUMEN

The first known outbreak caused by a viral haemorrhagic septicaemia virus (VHSV) strain of genotype III in rainbow trout occurred in 2007 at a marine farm in Storfjorden, Norway. The source of the virus is unknown, and cod and other marine fish around the farms are suspected as a possible reservoir. The main objective of this study was to test the susceptibility of juvenile Atlantic cod to the VHSV isolate from Storfjorden. As the pathology of VHS in cod is sparsely described, an additional aim of the study was to give a histopathological description of the disease. Two separate challenge experiments were carried out, using both intra peritoneal (ip) injection and cohabitation as challenge methods. Mortality in the ip injection experiment leveled at approximately 50% three weeks post challenge. Both immunohistochemical and rRT-PCR analysis of organs sampled from diseased and surviving fish confirmed VHSV infection. No VHSV was detected in the cohabitants. The results indicate that Atlantic cod has a low natural susceptibility to this VHSV genotype III strain. One of the most extensive pathological changes was degeneration of cardiac myocytes. Immunohistochemistry confirmed that the lesions were related to VHSV. In some fish, the hematopoietic tissue of spleen and kidney showed degeneration and immunostaining, classical signs of VHS, as described in rainbow trout. Positive immunostaining of the capillaries of the gills, suggests this organ as a useful alternative when screening for VHSV.

3.
Virol J ; 7: 188, 2010 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-20701761

RESUMEN

BACKGROUND: Pancreas disease (PD) is a viral fish disease which in recent years has significantly affected Norwegian salmonid aquaculture. In Norway, the aetiological agent salmonid alphavirus (SAV) has been found to be represented by the subtype 3 only. SAV subtype 3 has in previous analyses been found to show a lower genetic divergence than the subtypes found to cause PD in Ireland and Scotland. The aim of this study was to evaluate the nucleotide (nt) and amino acid divergence and the phylogenetic relationship of 33 recent SAV subtype 3 sequences. The samples from which the sequences were obtained originated from both PD endemic and non-endemic regions in an attempt to investigate agent origin/spread. Multiple samples throughout the seawater production phase from several salmonid populations were included to investigate genetic variation during an outbreak. The analyses were mainly based on partial sequences from the E2 gene. For some samples, additional partial 6 K and nsP3 gene sequences were available. RESULTS: The nucleotide divergence for all gene fragments ranged from total identity (0.0% divergence) to 0.45% (1103 nt fragment of E2), 1.11% (451 nt fragment of E2), 0.94% (6 K) and 0.28% (nsP3). This low nucleotide divergence corresponded well to previous reports on SAV 3 sequences; however the observed divergence for the short E2 fragment was higher than that previously reported. When compared to SAVH20/03 (AY604235), amino acid substitutions were detected in all assessed gene fragments however the in vivo significance of these on for example disease outbreak mortality could not be concluded on. The phylogenetic tree based on the 451 nt E2 fragment showed that the sequences divided into two clusters with low genetic divergence, representing only a single SAV subtype. CONCLUSIONS: The analysed sequences represented two clusters of a single SAV subtype; however some of the observed sequence divergence was higher than that previously reported by other researchers. Larger scale, full length sequence analyses should be instigated to allow further phylogenetic and molecular epidemiology investigations of SAV subtype 3.


Asunto(s)
Infecciones por Alphavirus/veterinaria , Alphavirus/clasificación , Alphavirus/aislamiento & purificación , Enfermedades de los Peces/epidemiología , Enfermedades de los Peces/virología , Salmo salar/virología , Alphavirus/genética , Infecciones por Alphavirus/epidemiología , Infecciones por Alphavirus/virología , Sustitución de Aminoácidos/genética , Animales , Análisis por Conglomerados , Genotipo , Epidemiología Molecular , Datos de Secuencia Molecular , Noruega/epidemiología , Filogenia , ARN Viral/genética , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico , Proteínas Virales/genética
4.
Front Vet Sci ; 6: 419, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31850380

RESUMEN

Salmonid alphavirus (SAV) is the OIE-listed, viral cause of pancreas disease (PD) in farmed Atlantic salmon. SAV is routinely detected by PCR-methods while typical histopathological lesions are additionally used to confirm the diagnosis. Field evaluation of diagnostic test performance is essential to ensure confidence in a test's ability to predict the infection or disease status of a target animal. For most tests used in aquaculture, characteristics like sensitivity (Se) and specificity (Sp) at the analytical level may be known. Few tests are, however, evaluated at the diagnostic level according to the OIE standard. In the present work, we estimated diagnostic test sensitivity (DSe) and diagnostic test specificity (DSp) for five laboratory tests used for SAV detection. As there is no gold standard, the study was designed using Bayesian latent class analysis. Real-time RT-PCR, cell culture, histopathology, virus neutralization test, and immunohistochemistry were compared using samples taken from three different farmed Atlantic salmon populations with different infection status; one population regarded negative, one in an early stage of infection, and one in a later stage of infection. The average fish weight in the three populations was 2.0, 1.6, and 1.5 kg, respectively. The DSe and DSp of real-time RT-PCR is of particular interest due to its common use as a screening tool. The method showed high DSe (≥0.977) and moderate DSp (0.831) in all 3-populations models. The results further suggest that a follow-up test of serum samples in real-time RT-PCR negative populations may be prudent in cases where epidemiological information suggest a high risk of infection and where a false negative result is of high consequence. This study underlines the need to choose a test appropriate for the purpose of the testing. In the case of a weak positive PCR-result, a follow-up test should be conducted to verify the presence of SAV. Cell culture showed high DSe and DSp and may be used to verify viral presence.

5.
PLoS One ; 9(9): e108529, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25248078

RESUMEN

Viral hemorrhagic septicemia virus (VHSV) infects a wide range of marine fish species. To study the occurrence of VHSV in wild marine fish populations in Norwegian coastal waters and fjord systems a total of 1927 fish from 39 different species were sampled through 5 research cruises conducted in 2009 to 2011. In total, VHSV was detected by rRT-PCR in twelve samples originating from Atlantic herring (Clupea harengus), haddock (Melanogrammus aeglefinus), whiting (Merlangius merlangus) and silvery pout (Gadiculus argenteus). All fish tested positive in gills while four herring and one silvery pout also tested positive in internal organs. Successful virus isolation in cell culture was only obtained from one pooled Atlantic herring sample which shows that today's PCR methodology have a much higher sensitivity than cell culture for detection of VHSV. Sequencing revealed that the positive samples belonged to VHSV genotype Ib and phylogenetic analysis shows that the isolate from Atlantic herring and silvery pout are closely related. All positive fish were sampled in the same area in the northern county of Finnmark. This is the first detection of VHSV in Atlantic herring this far north, and to our knowledge the first detection of VHSV in silvery pout. However, low prevalence of VHSV genotype Ib in Atlantic herring and other wild marine fish are well known in other parts of Europe. Earlier there have been a few reports of disease outbreaks in farmed rainbow trout with VHSV of genotype Ib, and our results show that there is a possibility of transfer of VHSV from wild to farmed fish along the Norwegian coast line. The impact of VHSV on wild fish is not well documented.


Asunto(s)
Peces/virología , Septicemia Hemorrágica Viral/virología , Novirhabdovirus/aislamiento & purificación , Factores de Edad , Animales , Enfermedades Asintomáticas , Océano Atlántico , Secuencia de Bases , Reservorios de Enfermedades , Susceptibilidad a Enfermedades , Branquias/virología , Septicemia Hemorrágica Viral/epidemiología , Septicemia Hemorrágica Viral/transmisión , Datos de Secuencia Molecular , Noruega , Filogenia , Prevalencia , ARN Viral/aislamiento & purificación , Análisis de Secuencia de ARN , Especificidad de la Especie , Vísceras/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA