RESUMEN
The fungus Candida albicans frequently colonizes the human gastrointestinal tract, from which it can disseminate to cause systemic disease. This polymorphic species can transition between growing as single-celled yeast and as multicellular hyphae to adapt to its environment. The current dogma of C. albicans commensalism is that the yeast form is optimal for gut colonization, whereas hyphal cells are detrimental to colonization but critical for virulence1-3. Here, we reveal that this paradigm does not apply to multi-kingdom communities in which a complex interplay between fungal morphology and bacteria dictates C. albicans fitness. Thus, whereas yeast-locked cells outcompete wild-type cells when gut bacteria are absent or depleted by antibiotics, hyphae-competent wild-type cells outcompete yeast-locked cells in hosts with replete bacterial populations. This increased fitness of wild-type cells involves the production of hyphal-specific factors including the toxin candidalysin4,5, which promotes the establishment of colonization. At later time points, adaptive immunity is engaged, and intestinal immunoglobulin A preferentially selects against hyphal cells1,6. Hyphal morphotypes are thus under both positive and negative selective pressures in the gut. Our study further shows that candidalysin has a direct inhibitory effect on bacterial species, including limiting their metabolic output. We therefore propose that C. albicans has evolved hyphal-specific factors, including candidalysin, to better compete with bacterial species in the intestinal niche.
Asunto(s)
Candida albicans , Proteínas Fúngicas , Microbioma Gastrointestinal , Hifa , Intestinos , Micotoxinas , Simbiosis , Animales , Femenino , Humanos , Masculino , Ratones , Bacterias/crecimiento & desarrollo , Bacterias/inmunología , Candida albicans/crecimiento & desarrollo , Candida albicans/inmunología , Candida albicans/metabolismo , Candida albicans/patogenicidad , Proteínas Fúngicas/metabolismo , Microbioma Gastrointestinal/inmunología , Hifa/crecimiento & desarrollo , Hifa/inmunología , Hifa/metabolismo , Inmunoglobulina A/inmunología , Intestinos/inmunología , Intestinos/microbiología , Micotoxinas/metabolismo , VirulenciaRESUMEN
The human pathogenic fungus Candida albicans damages epithelial cells during superficial infections. Here we use three-dimensional-sequential-confocal Raman spectroscopic imaging and atomic force microscopy to investigate the interaction of C. albicans wild type cells, the secreted C. albicans peptide toxin candidalysin and mutant cells lacking candidalysin with epithelial cells. The candidalysin is responsible for epithelial cell damage and exhibits in its deuterated form an identifiable Raman signal in a frequency region distinct from the cellular frequency region. Vibration modes at 2100-2200 cm-1 attributed to carbondeuterium bending and at 477 cm-1, attributed to the nitrogendeuterium out-of-plane bending, found around the nucleus, can be assigned to deuterated candidalysin. Atomic force microscopy visualized 100 nm deep lesions on the cell and force-distance curves indicate the higher adhesion on pore surrounding after incubation with candidalysin. Candidalysin targets the plasma membrane, but is also found inside of the cytosol of epithelial cells during C. albicans infection.
Asunto(s)
Candida albicans , Células Epiteliales , Microscopía de Fuerza Atómica , Espectrometría Raman , Candida albicans/metabolismo , Células Epiteliales/microbiología , Células Epiteliales/metabolismo , Microscopía de Fuerza Atómica/métodos , Espectrometría Raman/métodos , Humanos , Candidiasis/microbiología , Microscopía Confocal/métodos , Marcaje Isotópico , Imagenología Tridimensional , Deuterio/químicaRESUMEN
The opportunistic pathogen Candida glabrata is the second most frequent causative agent of vulvovaginal candidiasis (VVC), a disease that affects 70-75% of women at least once during their life. However, C. glabrata is almost avirulent in mice and normally incapable of inflicting damage to vaginal epithelial cells in vitro. We thus proposed that host factors present in vivo may influence C. glabrata pathogenicity. We, therefore, analyzed the impact of albumin, one of the most abundant proteins of the vaginal fluid. The presence of human, but not murine, albumin dramatically increased the potential of C. glabrata to damage vaginal epithelial cells. This effect depended on macropinocytosis-mediated epithelial uptake of albumin and subsequent proteolytic processing. The enhanced pathogenicity of C. glabrata can be explained by a combination of beneficial effects for the fungus, which includes an increased access to iron, accelerated growth, and increased adhesion. Screening of C. glabrata deletion mutants revealed that Hap5, a key regulator of iron homeostasis, is essential for the albumin-augmented damage potential. The albumin-augmented pathogenicity was reversed by the addition of iron chelators and a similar increase in pathogenicity was shown by increasing the iron availability, confirming a key role of iron. Accelerated growth not only led to higher cell numbers, but also to increased fungal metabolic activity and oxidative stress resistance. Finally, the albumin-driven enhanced damage potential was associated with the expression of distinct C. glabrata virulence genes. Transcriptional responses of the epithelial cells suggested an unfolded protein response (UPR) and ER-stress responses combined with glucose starvation induced by fast growing C. glabrata cells as potential mechanisms by which cytotoxicity is mediated.Collectively, we demonstrate that albumin augments the pathogenic potential of C. glabrata during interaction with vaginal epithelial cells. This suggests a role for albumin as a key player in the pathogenesis of VVC.
Asunto(s)
Albúminas/metabolismo , Candida glabrata/patogenicidad , Candidiasis Vulvovaginal/microbiología , Células Epiteliales/microbiología , Animales , Femenino , Humanos , RatonesRESUMEN
Sample degradation, in particular of biomolecules, frequently occurs in surface-enhanced Raman spectroscopy (SERS) utilizing supported silver SERS substrates. Currently, thermal and/or photocatalytic effects are considered to cause sample degradation. This paper establishes the efficient inhibition of sample degradation using iodide which is demonstrated by a systematic SERS study of a small peptide in aqueous solution. Remarkably, a distinct charge separation-induced surface potential difference is observed for SERS substrates under laser irradiation using Kelvin probe force microscopy. This directly unveils the photocatalytic effect of Ag-SERS substrates. Based on the presented results, it is proposed that plasmonic photocatalysis dominates sample degradation in SERS experiments and the suppression of typical SERS sample degradation by iodide is discussed by means of the energy levels of the substrate under mild irradiation conditions. This approach paves the way toward more reliable and reproducible SERS studies of biomolecules under physiological conditions.
Asunto(s)
Yoduros , Espectrometría Raman , Espectrometría Raman/métodos , Microscopía de Fuerza AtómicaRESUMEN
Human and plant pathogenic fungi have a major impact on public health and agriculture. Although these fungi infect very diverse hosts and are often highly adapted to specific host niches, they share surprisingly similar mechanisms that mediate immune evasion, modulation of distinct host targets and exploitation of host nutrients, highlighting that successful strategies have evolved independently among diverse fungal pathogens. These attributes are facilitated by an arsenal of fungal factors. However, not a single molecule, but rather the combined effects of several factors enable these pathogens to establish infection. In this review, we discuss the principles of human and plant fungal pathogenicity mechanisms and discuss recent discoveries made in this field.
Asunto(s)
Hongos/fisiología , Hongos/patogenicidad , Interacciones Microbiota-Huesped , Evasión Inmune , Micosis/inmunología , Plantas/microbiología , Adaptación Fisiológica , Animales , Humanos , Enfermedades de las Plantas/microbiología , VirulenciaRESUMEN
The human pathogenic fungus Candida albicans is a frequent cause of mucosal infections. Although the ability to transition from the yeast to the hypha morphology is essential for virulence, hypha formation and host cell invasion per se are not sufficient for the induction of epithelial damage. Rather, the hypha-associated peptide toxin, candidalysin, a product of the Ece1 polyprotein, is the critical damaging factor. While synthetic, exogenously added candidalysin is sufficient to damage epithelial cells, the level of damage does not reach the same level as invading C. albicans hyphae. Therefore, we hypothesized that a combination of fungal attributes is required to deliver candidalysin to the invasion pocket to enable the full damaging potential of C. albicans during infection. Utilising a panel of C. albicans mutants with known virulence defects, we demonstrate that the full damage potential of C. albicans requires the coordinated delivery of candidalysin to the invasion pocket. This process requires appropriate epithelial adhesion, hyphal extension and invasion, high levels of ECE1 transcription, proper Ece1 processing and secretion of candidalysin. To confirm candidalysin delivery, we generated camelid VH Hs (nanobodies) specific for candidalysin and demonstrate localization and accumulation of the toxin only in C. albicans-induced invasion pockets. In summary, a defined combination of virulence attributes and cellular processes is critical for delivering candidalysin to the invasion pocket to enable the full damage potential of C. albicans during mucosal infection. TAKE AWAYS: Candidalysin is a peptide toxin secreted by C. albicans causing epithelial damage. Candidalysin delivery to host cell membranes requires specific fungal attributes. Candidalysin accumulates in invasion pockets created by invasive hyphae. Camelid nanobodies enabled visualisation of candidalysin in the invasion pocket.
Asunto(s)
Candida albicans , Proteínas Fúngicas , Proteínas Fúngicas/genética , Humanos , Hifa , VirulenciaRESUMEN
Cytolytic proteins and peptide toxins are classical virulence factors of several bacterial pathogens which disrupt epithelial barrier function, damage cells and activate or modulate host immune responses. Such toxins have not been identified previously in human pathogenic fungi. Here we identify the first, to our knowledge, fungal cytolytic peptide toxin in the opportunistic pathogen Candida albicans. This secreted toxin directly damages epithelial membranes, triggers a danger response signalling pathway and activates epithelial immunity. Membrane permeabilization is enhanced by a positive charge at the carboxy terminus of the peptide, which triggers an inward current concomitant with calcium influx. C. albicans strains lacking this toxin do not activate or damage epithelial cells and are avirulent in animal models of mucosal infection. We propose the name 'Candidalysin' for this cytolytic peptide toxin; a newly identified, critical molecular determinant of epithelial damage and host recognition of the clinically important fungus, C. albicans.
Asunto(s)
Candida albicans/metabolismo , Candida albicans/patogenicidad , Citotoxinas/metabolismo , Proteínas Fúngicas/toxicidad , Micotoxinas/toxicidad , Factores de Virulencia/metabolismo , Calcio/metabolismo , Candida albicans/inmunología , Candidiasis/metabolismo , Candidiasis/microbiología , Candidiasis/patología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Citotoxinas/genética , Citotoxinas/toxicidad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/inmunología , Células Epiteliales/patología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Interacciones Huésped-Patógeno/inmunología , Humanos , Membrana Mucosa/microbiología , Membrana Mucosa/patología , Micotoxinas/genética , Micotoxinas/metabolismo , Transducción de Señal/efectos de los fármacos , Virulencia/efectos de los fármacos , Factores de Virulencia/genética , Factores de Virulencia/toxicidadRESUMEN
BACKGROUND & AIMS: Alcohol-associated liver disease is a leading indication for liver transplantation and a leading cause of mortality. Alterations to the gut microbiota contribute to the pathogenesis of alcohol-associated liver disease. Patients with alcohol-associated liver disease have increased proportions of Candida spp. in the fecal mycobiome, yet little is known about the effect of intestinal Candida on the disease. Herein, we evaluated the contributions of Candida albicans and its exotoxin candidalysin in alcohol-associated liver disease. METHODS: C. albicans and the extent of cell elongation 1 (ECE1) were analyzed in fecal samples from controls, patients with alcohol use disorder and those with alcoholic hepatitis. Mice colonized with different and genetically manipulated C. albicans strains were subjected to the chronic-plus-binge ethanol diet model. Primary hepatocytes were isolated and incubated with candidalysin. RESULTS: The percentages of individuals carrying ECE1 were 0%, 4.76% and 30.77% in non-alcoholic controls, patients with alcohol use disorder and patients with alcoholic hepatitis, respectively. Candidalysin exacerbates ethanol-induced liver disease and is associated with increased mortality in mice. Candidalysin enhances ethanol-induced liver disease independently of the ß-glucan receptor C-type lectin domain family 7 member A (CLEC7A) on bone marrow-derived cells, and candidalysin does not alter gut barrier function. Candidalysin can damage primary hepatocytes in a dose-dependent manner in vitro and is associated with liver disease severity and mortality in patients with alcoholic hepatitis. CONCLUSIONS: Candidalysin is associated with the progression of ethanol-induced liver disease in preclinical models and worse clinical outcomes in patients with alcoholic hepatitis. LAY SUMMARY: Candidalysin is a peptide toxin secreted by the commensal gut fungus Candida albicans. Candidalysin enhances alcohol-associated liver disease independently of the ß-glucan receptor CLEC7A on bone marrow-derived cells in mice without affecting intestinal permeability. Candidalysin is cytotoxic to primary hepatocytes, indicating a direct role of candidalysin on ethanol-induced liver disease. Candidalysin might be an effective target for therapy in patients with alcohol-associated liver disease.
Asunto(s)
Candida albicans/metabolismo , Exotoxinas/metabolismo , Proteínas Fúngicas/metabolismo , Hepatitis Alcohólica/metabolismo , Hepatitis Alcohólica/microbiología , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/microbiología , Adulto , Anciano , Animales , Estudios de Casos y Controles , Células Cultivadas , Modelos Animales de Enfermedad , Exotoxinas/análisis , Exotoxinas/farmacología , Heces/microbiología , Femenino , Proteínas Fúngicas/análisis , Proteínas Fúngicas/farmacología , Microbioma Gastrointestinal , Hepatitis Alcohólica/mortalidad , Hepatocitos/efectos de los fármacos , Humanos , Lectinas Tipo C/deficiencia , Lectinas Tipo C/genética , Hepatopatías Alcohólicas/mortalidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Índice de Severidad de la EnfermedadRESUMEN
Candida spp. are leading causes of opportunistic mycoses, including life-threatening hospital-borne infections, and novel antifungals, preferably aiming targets that have not been used before, are constantly needed. Hydrazone- and guanidine-containing molecules have shown a wide range of biological activities, including recently described excellent antifungal properties. In this study, four bis-guanylhydrazone derivatives (BG1-4) were generated following a previously developed synthetic route. Anti-Candida (two C. albicans, C. glabrata, and C. parapsilosis) minimal inhibitory concentrations (MICs) of bis-guanylhydrazones were between 2 and 15.6 µg/mL. They were also effective against preformed 48-h-old C. albicans biofilms. In vitro DNA interaction, circular dichroism, and molecular docking analysis showed the great ability of these compounds to bind fungal DNA. Competition with DNA-binding stain, exposure of phosphatidylserine at the outer layer of the cytoplasmic membrane, and activation of metacaspases were shown for BG3. This pro-apoptotic effect of BG3 was only partially due to the accumulation of reactive oxygen species in C. albicans, as only twofold MIC and higher concentrations of BG3 caused depolarization of mitochondrial membrane which was accompanied by the decrease of the activity of fungal mitochondrial dehydrogenases, while the activity of oxidative stress response enzymes glutathione reductase and catalase was not significantly affected. BG3 showed synergistic activity with amphotericin B with a fractional inhibitory concentration index of 0.5. It also exerted low cytotoxicity and the ability to inhibit epithelial cell (TR146) invasion and damage by virulent C. albicans SC5314. With further developments, BG3 may further progress in the antifungal pipeline as a DNA-targeting agent.
Asunto(s)
Antifúngicos/farmacología , Candida/efectos de los fármacos , ADN de Hongos/efectos de los fármacos , Guanidinas/farmacología , Hidrazonas/farmacología , Antifúngicos/síntesis química , Apoptosis , Candida/fisiología , Dicroismo Circular , Sinergismo Farmacológico , Guanidinas/síntesis química , Hidrazonas/síntesis química , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento MolecularRESUMEN
Candida albicans is an important human opportunistic fungal pathogen which is frequently found as part of the normal human microbiota. It is well accepted that the fungus interacts with other components of the resident microbiota and that this impacts the commensal or pathogenic outcome of C. albicans colonization. Different types of interactions, including synergism or antagonism, contribute to a complex balance between the multitude of different species. Mixed biofilms of C. albicans and streptococci are a well-studied example of a mutualistic interaction often potentiating the virulence of the individual members. In contrast, other bacteria like lactobacilli are known to antagonize C. albicans, and research has just started elucidating the mechanisms behind these interactions. This scenario is even more complicated by a third player, the host. This review focuses on interactions between C. albicans and gram-positive bacteria whose investigation will without doubt ultimately help understanding C. albicans infections.
Asunto(s)
Biopelículas/crecimiento & desarrollo , Candida albicans/patogenicidad , Candidiasis/inmunología , Bacterias Grampositivas/patogenicidad , Infecciones por Bacterias Grampositivas/inmunología , Lactobacillaceae/patogenicidad , Antibiosis/fisiología , Adhesión Bacteriana , Candida albicans/genética , Candida albicans/crecimiento & desarrollo , Candidiasis/microbiología , Coinfección , Bacterias Grampositivas/genética , Bacterias Grampositivas/crecimiento & desarrollo , Infecciones por Bacterias Grampositivas/microbiología , Interacciones Huésped-Patógeno , Humanos , Lactobacillaceae/genética , Lactobacillaceae/crecimiento & desarrollo , Simbiosis/fisiología , VirulenciaRESUMEN
The glucocorticoid betamethasone (BM) is frequently employed in clinical practice because of its anti-inflammatory and immunosuppressive properties. In this study, we investigated the effect of BM (1 and 2 mM) on the ability of Candida albicans to adhere to, invade and damage oral, intestinal or vaginal epithelial cells, as well as to elicit cytokine and chemokine release. BM at 2 mM concentration stimulated adherence of C. albicans to vaginal cells and facilitated the invasion of intestinal and vaginal epithelia without influencing the growth rate of invading C. albicans hyphae at any type of epithelia and BM concentrations tested. In addition, BM at 2 mM concentration also augmented C. albicans-initiated cell damage of oral and intestinal cells. Furthermore, BM exposure decreased IL-6 cytokine and IL-8 chemokine release from oral and vaginal epithelial cells and also IL-6 release from intestinal epithelium after infection with C. albicans. These observations suggest that high-dose applications of BM may predispose patients to various epithelial C. albicans infections.
Asunto(s)
Betametasona/farmacología , Candida albicans/efectos de los fármacos , Candidiasis/microbiología , Células Epiteliales/microbiología , Glucocorticoides/farmacología , Candida albicans/crecimiento & desarrollo , Candida albicans/fisiología , Candidiasis/metabolismo , Línea Celular , Células Epiteliales/metabolismo , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismoRESUMEN
Diabetic macular edema (DME) is a serious condition that can cause blindness in diabetic patients suffering from diabetic retinopathy (DR). Although vascular endothelial growth factor (VEGF) is known to play a role in the development of DME, the pathological processes leading to the onset of this disease are highly complex and the exact sequence in which they occur is still not completely understood. Angiogenesis and inflammation have been shown to be involved in the pathogenesis of this disease. However, it still remains to be clarified whether angiogenesis following VEGF over-expression is a cause or a consequence of inflammation. Here, we provide an overview of the current data available in the literature focusing on VEGF, angiogenesis, inflammation, DR and DME. Our analysis suggests that angiogenesis and inflammation act interdependently during the development of DME. VEGF is a critical player in the molecular crosstalk occurring between these two processes, reinforcing the use of anti-VEGF agents for the treatment of DME.
Asunto(s)
Edema Macular/metabolismo , Neovascularización Patológica/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Humanos , Edema Macular/patologíaRESUMEN
Overexpression of the multidrug efflux pump MDR1 is one mechanism by which the pathogenic yeast Candida albicans develops resistance to the antifungal drug fluconazole. The constitutive upregulation of MDR1 in fluconazole-resistant, clinical C. albicans isolates is caused by gain-of-function mutations in the zinc cluster transcription factor Mrr1. It has been suggested that Mrr1 activates MDR1 transcription by recruiting Ada2, a subunit of the SAGA/ADA coactivator complex. However, MDR1 expression is also regulated by the bZIP transcription factor Cap1, which mediates the oxidative stress response in C. albicans. Here, we show that a hyperactive Mrr1 containing a gain-of-function mutation promotes MDR1 overexpression independently of Ada2. In contrast, a C-terminally truncated, hyperactive Cap1 caused MDR1 overexpression in a wild-type strain but only weakly in mutants lacking ADA2. In the presence of benomyl or H2O2, compounds that induce MDR1 expression in an Mrr1- and Cap1-dependent fashion, MDR1 was upregulated with the same efficiency in wild-type and ada2Δ cells. These results indicate that Cap1, but not Mrr1, recruits Ada2 to the MDR1 promoter to induce the expression of this multidrug efflux pump and that Ada2 is not required for MDR1 overexpression in fluconazole-resistant C. albicans strains containing gain-of-function mutations in Mrr1.
Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Candida albicans/genética , Proteínas de Ciclo Celular/genética , Farmacorresistencia Fúngica Múltiple/genética , Proteínas Fúngicas/genética , Regulación hacia Arriba/genética , Candida albicans/efectos de los fármacos , Fluconazol/farmacología , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/genética , Peróxido de Hidrógeno/farmacología , Mutación/genética , Regiones Promotoras Genéticas/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/genética , Regulación hacia Arriba/efectos de los fármacosRESUMEN
BACKGROUND: Facial aging and dermal conditions may negatively influence the quality of life, leading patients to seek aesthetic procedures to restore a more satisfying appearance. HArmonyCa™ is a recently developed hybrid filler that combines the actions of the most common dermal fillers, hyaluronic acid (HA) and calcium hydroxylapatite (CaHA). AIMS: This study investigates the efficacy and safety of HArmonyCa™ in patients affected by chrono- and photoaging and several facial skin conditions. PATIENTS/METHODS: One hundred and twenty-nine patients, affected by chrono- and photoaging, and skin conditions such as oily and acne-prone skin, rosacea, or scarring, were treated with HArmonyCa™. Injections followed the retrograde linear fanning technique. A physicians' consensus identified five optimal entry points. The physician and patients assessed treatment outcomes using the Global Aesthetic Improvement Scale (GAIS) 9 months after treatment (including immediate lift effect, skin firmness, and elasticity), and 3D images were taken for documentation. Adverse events (AEs) were evaluated immediately after the procedure and after 9 months. RESULTS: According to the physician's assessments, all patients displayed an improvement in facial appearance, particularly during movement, with the patients' evaluation showing agreement. Only minor AEs were reporte, which resolved spontaneously. Moreover, HArmonyCa™ treatment proved compatible with different medications and aesthetic procedures. CONCLUSIONS: This study shows that one treatment with HArmonyCa™ yields highly satisfactory outcomes in patients affected by skin conditions. For the first time, we show that HArmonyCa™ is a dynamic filler that improves facial laxity during movement. The treatment proved to be safe and fully compatible with other cosmetic procedures and medications.
RESUMEN
Candida albicans can cause mucosal infections in humans. This includes oropharyngeal candidiasis, which is commonly observed in human immunodeficiency virus infected patients, and vulvovaginal candidiasis (VVC), which is the most frequent manifestation of candidiasis. Epithelial cell invasion by C. albicans hyphae is accompanied by the secretion of candidalysin, a peptide toxin that causes epithelial cell cytotoxicity. During vaginal infections, candidalysin-driven tissue damage triggers epithelial signaling pathways, leading to hyperinflammatory responses and immunopathology, a hallmark of VVC. Therefore, we proposed blocking candidalysin activity using nanobodies to reduce epithelial damage and inflammation as a therapeutic strategy for VVC. Anti-candidalysin nanobodies were confirmed to localize around epithelial-invading C. albicans hyphae, even within the invasion pocket where candidalysin is secreted. The nanobodies reduced candidalysin-induced damage to epithelial cells and downstream proinflammatory responses. Accordingly, the nanobodies also decreased neutrophil activation and recruitment. In silico mathematical modeling enabled the quantification of epithelial damage caused by candidalysin under various nanobody dosing strategies. Thus, nanobody-mediated neutralization of candidalysin offers a novel therapeutic approach to block immunopathogenic events during VVC and alleviate symptoms.IMPORTANCEWorldwide, vaginal infections caused by Candida albicans (VVC) annually affect millions of women, with symptoms significantly impacting quality of life. Current treatments are based on anti-fungals and probiotics that target the fungus. However, in some cases, infections are recurrent, called recurrent VVC, which often fails to respond to treatment. Vaginal mucosal tissue damage caused by the C. albicans peptide toxin candidalysin is a key driver in the induction of hyperinflammatory responses that fail to clear the infection and contribute to immunopathology and disease severity. In this pre-clinical evaluation, we show that nanobody-mediated candidalysin neutralization reduces tissue damage and thereby limits inflammation. Implementation of candidalysin-neutralizing nanobodies may prove an attractive strategy to alleviate symptoms in complicated VVC cases.
Asunto(s)
Candidiasis Vulvovaginal , Candidiasis , Proteínas Fúngicas , Anticuerpos de Dominio Único , Humanos , Femenino , Candidiasis Vulvovaginal/microbiología , Calidad de Vida , Anticuerpos de Dominio Único/metabolismo , Candida albicans/metabolismo , Candidiasis/microbiología , InflamaciónRESUMEN
The opportunistic fungal pathogen Candida albicans damages host cells via its peptide toxin, candidalysin. Before secretion, candidalysin is embedded in a precursor protein, Ece1, which consists of a signal peptide, the precursor of candidalysin and seven non-candidalysin Ece1 peptides (NCEPs), and is found to be conserved in clinical isolates. Here we show that the Ece1 polyprotein does not resemble the usual precursor structure of peptide toxins. C. albicans cells are not susceptible to their own toxin, and single NCEPs adjacent to candidalysin are sufficient to prevent host cell toxicity. Using a series of Ece1 mutants, mass spectrometry and anti-candidalysin nanobodies, we show that NCEPs play a role in intracellular Ece1 folding and candidalysin secretion. Removal of single NCEPs or modifications of peptide sequences cause an unfolded protein response (UPR), which in turn inhibits hypha formation and pathogenicity in vitro. Our data indicate that the Ece1 precursor is not required to block premature pore-forming toxicity, but rather to prevent intracellular auto-aggregation of candidalysin sequences.
Asunto(s)
Proteínas Fúngicas , Micotoxinas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Candida albicans/metabolismo , Micotoxinas/metabolismo , Péptidos/farmacología , Péptidos/metabolismoRESUMEN
Life expectancy for persons with hemophilia (PWH) has considerably increased in the last decades as a direct result of the availability of modern therapies to control the clotting defect. Because their life expectancy now matches that of the general population, PWH are experiencing age-related comorbidities, such as, cardiovascular diseases, metabolic syndrome, renal diseases, sexuality issues, malignancies, and neurologic problems, that until recently have been rarely seen in this group of patients. In this article, we present a summary of the current knowledge on the aging PWH along with the clinical approaches that may be integrated into the routine comprehensive care of these patients for preventing, diagnosing, and monitoring age-related comorbidities. In general, patients with and without hemophilia should receive similar care, with close collaboration between the physician treating PWH and the specialty expert treating the comorbid disease.
Asunto(s)
Hemofilia A/terapia , Factores de Edad , Comorbilidad , Hemofilia A/tratamiento farmacológico , Hemofilia A/prevención & control , Humanos , Esperanza de VidaRESUMEN
Vulvovaginal candidiasis (VVC) affects nearly 3/4 of women during their lifetime, and its symptoms seriously reduce quality of life. Although Candida albicans is a common commensal, it is unknown if VVC results from a switch from a commensal to pathogenic state, if only some strains can cause VVC, and/or if there is displacement of commensal strains with more pathogenic strains. We studied a set of VVC and colonizing C. albicans strains to identify consistent in vitro phenotypes associated with one group or the other. We find that the strains do not differ in overall genetic profile or behavior in culture media (i.e., multilocus sequence type [MLST] profile, rate of growth, and filamentation), but they show strikingly different behaviors during their interactions with vaginal epithelial cells. Epithelial infections with VVC-derived strains yielded stronger fungal proliferation and shedding of fungi and epithelial cells. Transcriptome sequencing (RNA-seq) analysis of representative epithelial cell infections with selected pathogenic or commensal isolates identified several differentially activated epithelial signaling pathways, including the integrin, ferroptosis, and type I interferon pathways; the latter has been implicated in damage protection. Strikingly, inhibition of type I interferon signaling selectively increases fungal shedding of strains in the colonizing cohort, suggesting that increased shedding correlates with lower interferon pathway activation. These data suggest that VVC strains may intrinsically have enhanced pathogenic potential via differential elicitation of epithelial responses, including the type I interferon pathway. Therefore, it may eventually be possible to evaluate pathogenic potential in vitro to refine VVC diagnosis. IMPORTANCE Despite a high incidence of VVC, we still have a poor understanding of this female-specific disease whose negative impact on women's quality of life has become a public health issue. It is not yet possible to determine by genotype or laboratory phenotype if a given Candida albicans strain is more or less likely to cause VVC. Here, we show that Candida strains causing VVC induce more fungal shedding from epithelial cells than strains from healthy women. This effect is also accompanied by increased epithelial cell detachment and differential activation of the type I interferon pathway. These distinguishing phenotypes suggest it may be possible to evaluate the VVC pathogenic potential of fungal isolates. This would permit more targeted antifungal treatments to spare commensals and could allow for displacement of pathogenic strains with nonpathogenic colonizers. We expect these new assays to provide a more targeted tool for identifying fungal virulence factors and epithelial responses that control fungal vaginitis.
Asunto(s)
Candidiasis Vulvovaginal , Femenino , Humanos , Candidiasis Vulvovaginal/microbiología , Candida/genética , Tipificación de Secuencias Multilocus , Calidad de Vida , Candida albicans , Antifúngicos/farmacología , Fenotipo , Comunicación CelularRESUMEN
Candida albicans produces an important virulence factor, the hypha-associated Ece1-derived secreted peptide toxin candidalysin, which is crucial for the establishment of mucosal and systemic infections. C. albicans has also long been known to be hemolytic, yet the hemolytic factor has not been clearly identified. Here, we show that candidalysin is the hemolytic factor of C. albicans. Its hemolytic activity is modulated by fragments of another Ece1 peptide, P7. Hemolysis by candidalysin can be neutralized by the purinergic receptor antagonist pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS). PPADS also affects candidalysin's ability to intercalate into synthetic membranes. We also describe the neutralization potential of two anti-candidalysin nanobodies, which are promising candidates for future anti-Candida therapy. This work provides evidence that the historically proposed hemolytic factor of C. albicans is in fact candidalysin and sheds more light on the complex roles of this toxin in C. albicans biology and pathogenicity.
Asunto(s)
Candida albicans , Hemólisis , Proteínas Fúngicas , Candida , Membrana Mucosa , Factores de Virulencia/toxicidadRESUMEN
Intestinal microbiota dysbiosis can initiate overgrowth of commensal Candida species - a major predisposing factor for disseminated candidiasis. Commensal bacteria such as Lactobacillus rhamnosus can antagonize Candida albicans pathogenicity. Here, we investigate the interplay between C. albicans, L. rhamnosus, and intestinal epithelial cells by integrating transcriptional and metabolic profiling, and reverse genetics. Untargeted metabolomics and in silico modelling indicate that intestinal epithelial cells foster bacterial growth metabolically, leading to bacterial production of antivirulence compounds. In addition, bacterial growth modifies the metabolic environment, including removal of C. albicans' favoured nutrient sources. This is accompanied by transcriptional and metabolic changes in C. albicans, including altered expression of virulence-related genes. Our results indicate that intestinal colonization with bacteria can antagonize C. albicans by reshaping the metabolic environment, forcing metabolic adaptations that reduce fungal pathogenicity.