Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 28(20): 29631-29643, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-33114858

RESUMEN

In this paper, we demonstrate a phase-sensitive photonic terahertz imaging system, based on two-tone square-law detection with a record-low phase noise. The system comprises a high-frequency photodiode (PD) for THz generation and a square-law detector (SLD) for THz detection. Two terahertz of approximately 300 GHz tones, separated by an intermediate frequency (IF) (7 GHz-15 GHz), are generated in the PD by optical heterodyning and radiated into free-space. After transmission through a device-under-test, the two-tones are self-mixed inside the SLD. The mixing results in an IF-signal, which still contains the phase information of the terahertz tones. To achieve ultra-low phase-noise, we developed a new mixing scheme using a reference PD and a low-frequency electrical local oscillator (LO) to get rid of additional phase-noise terms. In combination with a second reference PD, the output signal of the SLD can be down-converted to the kHz region to realize lock-in detection with ultra-low phase noise. The evaluation of the phase-noise shows the to-date lowest reported value of phase deviation in a frequency domain photonic terahertz imaging and spectroscopy system of 0.034°. Consequently, we also attain a low minimum detectable path difference of 2 µm for a terahertz difference frequency of 15 GHz. This is in the same range as in coherent single-tone THz systems. At the same time, it lacks their complexity and restrictions caused by the necessary optical LOs, photoconductive antennas, temperature control and delay lines.

2.
Materials (Basel) ; 12(19)2019 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-31569341

RESUMEN

Two different types of nanoparticles (silicon dioxide and titanium dioxide) were selected within this study in order to analyze the interaction with bovine and human serum albumin. These particles were characterized by transmission and scanning electron microscopy (TEM and SEM), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDXS). In addition, the hydrodynamic size and the zeta potential were measured for all these nanoparticles. The serum proteins were incubated with the nanoparticles for up to one hour, and the albumin adsorption on the particle surface was investigated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The effect induced on the secondary structure of proteins was analyzed by Fourier transform infrared spectroscopy (FTIR). The results showed that albumin adsorbed on the surface of both types of nanoparticles, but in different quantities. In addition, we noticed different changes in the structure of albumin depending on the physicochemical properties of each type of particle tested. In conclusion, our study provides a comparative analysis between the different characteristics of nanoparticles and the protein corona formed on the particle surface and effects induced on protein structure in order to direct the development of "safe-by-design" nanoparticles, as their demands for research and applications continue to increase.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA