Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Hum Genomics ; 18(1): 35, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570878

RESUMEN

BACKGROUND: To investigate the genetics of early-onset progressive cerebellar ataxia in Iran, we conducted a study at the Children's Medical Center (CMC), the primary referral center for pediatric disorders in the country, over a three-year period from 2019 to 2022. In this report, we provide the initial findings from the national registry. METHODS: We selected all early-onset patients with an autosomal recessive mode of inheritance to assess their phenotype, paraclinical tests, and genotypes. The clinical data encompassed clinical features, the Scale for the Assessment and Rating of Ataxia (SARA) scores, Magnetic Resonance Imaging (MRI) results, Electrodiagnostic exams (EDX), and biomarker features. Our genetic investigations included single-gene testing, Whole Exome Sequencing (WES), and Whole Genome Sequencing (WGS). RESULTS: Our study enrolled 162 patients from various geographic regions of our country. Among our subpopulations, we identified known and novel pathogenic variants in 42 genes in 97 families. The overall genetic diagnostic rate was 59.9%. Notably, we observed PLA2G6, ATM, SACS, and SCA variants in 19, 14, 12, and 10 families, respectively. Remarkably, more than 59% of the cases were attributed to pathogenic variants in these genes. CONCLUSIONS: Iran, being at the crossroad of the Middle East, exhibits a highly diverse genetic etiology for autosomal recessive hereditary ataxia. In light of this heterogeneity, the development of preventive strategies and targeted molecular therapeutics becomes crucial. A national guideline for the diagnosis and management of patients with these conditions could significantly aid in advancing healthcare approaches and improving patient outcomes.


Asunto(s)
Degeneraciones Espinocerebelosas , Niño , Humanos , Irán/epidemiología , Degeneraciones Espinocerebelosas/genética , Pruebas Genéticas , Fenotipo , Genes Recesivos
2.
Brain ; 147(4): 1436-1456, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37951597

RESUMEN

The acyl-CoA-binding domain-containing protein 6 (ACBD6) is ubiquitously expressed, plays a role in the acylation of lipids and proteins and regulates the N-myristoylation of proteins via N-myristoyltransferase enzymes (NMTs). However, its precise function in cells is still unclear, as is the consequence of ACBD6 defects on human pathophysiology. Using exome sequencing and extensive international data sharing efforts, we identified 45 affected individuals from 28 unrelated families (consanguinity 93%) with bi-allelic pathogenic, predominantly loss-of-function (18/20) variants in ACBD6. We generated zebrafish and Xenopus tropicalis acbd6 knockouts by CRISPR/Cas9 and characterized the role of ACBD6 on protein N-myristoylation with myristic acid alkyne (YnMyr) chemical proteomics in the model organisms and human cells, with the latter also being subjected further to ACBD6 peroxisomal localization studies. The affected individuals (23 males and 22 females), aged 1-50 years, typically present with a complex and progressive disease involving moderate-to-severe global developmental delay/intellectual disability (100%) with significant expressive language impairment (98%), movement disorders (97%), facial dysmorphism (95%) and mild cerebellar ataxia (85%) associated with gait impairment (94%), limb spasticity/hypertonia (76%), oculomotor (71%) and behavioural abnormalities (65%), overweight (59%), microcephaly (39%) and epilepsy (33%). The most conspicuous and common movement disorder was dystonia (94%), frequently leading to early-onset progressive postural deformities (97%), limb dystonia (55%) and cervical dystonia (31%). A jerky tremor in the upper limbs (63%), a mild head tremor (59%), parkinsonism/hypokinesia developing with advancing age (32%) and simple motor and vocal tics were among other frequent movement disorders. Midline brain malformations including corpus callosum abnormalities (70%), hypoplasia/agenesis of the anterior commissure (66%), short midbrain and small inferior cerebellar vermis (38% each) as well as hypertrophy of the clava (24%) were common neuroimaging findings. Acbd6-deficient zebrafish and Xenopus models effectively recapitulated many clinical phenotypes reported in patients including movement disorders, progressive neuromotor impairment, seizures, microcephaly, craniofacial dysmorphism and midbrain defects accompanied by developmental delay with increased mortality over time. Unlike ACBD5, ACBD6 did not show a peroxisomal localization and ACBD6-deficiency was not associated with altered peroxisomal parameters in patient fibroblasts. Significant differences in YnMyr-labelling were observed for 68 co- and 18 post-translationally N-myristoylated proteins in patient-derived fibroblasts. N-myristoylation was similarly affected in acbd6-deficient zebrafish and X. tropicalis models, including Fus, Marcks and Chchd-related proteins implicated in neurological diseases. The present study provides evidence that bi-allelic pathogenic variants in ACBD6 lead to a distinct neurodevelopmental syndrome accompanied by complex and progressive cognitive and movement disorders.


Asunto(s)
Discapacidad Intelectual , Microcefalia , Trastornos del Movimiento , Malformaciones del Sistema Nervioso , Trastornos del Neurodesarrollo , Animales , Femenino , Humanos , Masculino , Transportadoras de Casetes de Unión a ATP , Discapacidad Intelectual/genética , Trastornos del Movimiento/genética , Malformaciones del Sistema Nervioso/genética , Trastornos del Neurodesarrollo/genética , Temblor , Pez Cebra , Lactante , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad
3.
Cerebellum ; 22(4): 640-650, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35731353

RESUMEN

Autosomal recessive spastic ataxia of Charlevoix Saguenay (ARSACS) is now increasingly identified from all countries over the world, possibly rendering it one of the most common autosomal recessive ataxias. Here, we selected patients harboring SACS variants, the causative gene for ARSACS, in a large cohort of 137 patients with early-onset ataxia recruited from May 2019 to May 2021 and were referred to the ataxia clinic. Genetic studies were performed for 111 out of 137 patients (81%) which led to a diagnostic rate of 72.9% (81 out of 111 cases). Ten patients with the molecular diagnosis of ARSACS were identified. We investigated the phenotypic and imaging spectra of all confirmed patients with ARSACS. We also estimated the frequency of ARSACS in this cohort and described their clinical and genetic findings including seven novel variants as well as novel neuroimaging findings. While the classic clinical triad of ARSACS is progressive cerebellar ataxia, spasticity, and sensorimotor polyneuropathy, it is not a constant feature in all patients. Sensorimotor axonal-demyelinating neuropathy was detected in all of our patients, but spasticity and extensor plantar reflex were absent in 50% (5/10). In all patients, brain magnetic resonance imaging (MRI) showed symmetric linear hypointensities in the pons (pontine stripes) and anterior superior cerebellar atrophy as well as a hyperintense rim around the thalami (thalamic rim). Although infratentorial arachnoid cyst has been reported in ARSACS earlier, we report anterior temporal arachnoid cyst in two patients for the first time, indicating that arachnoid cyst may be an associated imaging feature of ARSACS. We also extended molecular spectrum of ARSACS by presenting 8 pathogenic and one variant of unknown significance (VUS) sequence variants, which 7 of them have not been reported previously. MetaDome server confirmed that the identified VUS variant was in the intolerant regions of sacsin protein encoded by SACS.


Asunto(s)
Ataxia Cerebelosa , Quistes , Ataxias Espinocerebelosas , Humanos , Irán , Mutación/genética , Ataxias Espinocerebelosas/diagnóstico por imagen , Ataxias Espinocerebelosas/genética , Espasticidad Muscular/diagnóstico por imagen , Espasticidad Muscular/genética , Neuroimagen
4.
Acta Neurol Belg ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951452

RESUMEN

Early onset ataxias (EOAs) are a heterogeneous group of rare neurological disorders that not only involve the central and peripheral nervous system but also involve other organs. They are mainly manifested by degeneration or abnormal development of the cerebellum occurring before the age of 25 years and typically the pattern of inheritance is autosomal recessive.The diagnosis of autosomal recessive cerebellar ataxias (ARCAs) is confirmed by the clinical, laboratory, electrophysiological examination, neuroimaging findings, and mutation analysis when the causative gene is detected. Correct diagnosis is crucial for appropriate genetic counseling, estimating the prognosis, and, in some cases, pharmacological intervention. The wide variety of genotypes with a heterogeneous phenotypic manifestation makes the diagnostic work-up challenging, time-consuming, and expensive, not only for the clinician but also for the children and their parents. In this review, we focused on the step-by-step approach in which cerebellar ataxia is a prominent sign. We also outline the most common disorders in ataxias with early-onset manifestations.

5.
Ir J Med Sci ; 193(1): 449-456, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37523070

RESUMEN

BACKGROUND: Aminoacylase-1 deficiency (ACY1D) is an autosomal recessive rare inborn error of metabolism, which is caused by disease-causing variants in the ACY1. This disorder is characterized by increased urinary excretion of specific N-acetyl amino acids. Affected individuals demonstrate heterogeneous clinical manifestations which are primarily neurologic problems. In neuroimaging, corpus callosum hypoplasia, cerebellar vermis atrophy, and delayed myelination of cerebral white matter have been reported. AIMS: Finding disease-causing variant and expanding imaging findings in a patient with persistent basal ganglia involvement. METHODS: Whole-exome sequencing was performed in order to identify disease-causing variants in an affected 5-year-old male patient who presented with neurologic regression superimposed on neurodevelopmental delay following a febrile illness. He had inability to walk, cognitive impairment, speech delay, febrile-induced seizures, truncal hypotonia, moderate to severe generalized dystonia, and recurrent metabolic decompensation. RESULTS: All metabolic tests were normal except for a moderate metabolic acidosis following febrile illnesses. The results of serial brain magnetic resonance imaging (MRI) at ages 1 and 4.5 years revealed persistent bilateral and symmetric abnormal signals in basal ganglia mainly caudate and globus pallidus nuclei with progression over time in addition to a mild supratentorial atrophy. A homozygous missense variant [NM_000666.3: c.1057C>T; p.(Arg353Cys)] was identified in the ACY1, consistent with aminoacylase-1 deficiency. Variant confirmation in patient and segregation analysis in his family were performed using Sanger sequencing. CONCLUSIONS: Our findings expanded the phenotype spectrum of ACY1-related neurodegeneration by demonstrating persistent basal ganglia involvement and moderate to severe generalized dystonia.


Asunto(s)
Amidohidrolasas/deficiencia , Errores Innatos del Metabolismo de los Aminoácidos , Distonía , Masculino , Humanos , Preescolar , Distonía/metabolismo , Distonía/patología , Mutación , Ganglios Basales/metabolismo , Ganglios Basales/patología , Atrofia/metabolismo , Atrofia/patología , Imagen por Resonancia Magnética
6.
Clin Case Rep ; 11(10): e8062, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37881193

RESUMEN

Congenital myasthenic syndromes-5 (CMS5) is a rare autosomal recessive heterogeneous disorder, caused by pathogenic variants in the COLQ that lead to skeletal muscle weakness and abnormal fatigability. The onset is usually from birth to childhood. Disease-causing variants in the collagen-like tail subunit are the most explained etiology in synaptic CMS, causing defected acetylcholinesterase. In this study whole-exome sequencing (WES) was performed in an affected boy with muscle weakness, ophthalmoplegia, and bilateral ptosis and gene expression assay by qRT-PCR was performed in entire family. A homozygous nonsense variant in the COLQ [NM_005677.4:c.679C>T], (p.Arg227Ter) was identified in the proband. Segregation analysis by Sanger sequencing confirmed the homozygous state in the proband and heterozygous state in his parents and four of the siblings. The mRNA expression level in the proband was 0.02 of a healthy person, and in the carriers were 0.42 of a healthy person. This study presents an Iranian family with two affected children and eight symptomatic carriers with attenuated mRNA expression. This study provides evidence that carriers of the COLQ disease-causing variants could become symptomatic with some yet unknown pathogenesis mechanism and underscore the importance of further investigations to elucidate this mechanism.

7.
Mol Genet Genomic Med ; 11(6): e2159, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36866531

RESUMEN

BACKGROUND: Giant axonal neuropathy (GAN) is a progressive childhood hereditary polyneuropathy that affects both the peripheral and central nervous systems. Disease-causing variants in the gigaxonin gene (GAN) cause autosomal recessive giant axonal neuropathy. Facial weakness, nystagmus, scoliosis, kinky or curly hair, pyramidal and cerebellar signs, and sensory and motor axonal neuropathy are the main symptoms of this disorder. Here, we report two novel variants in the GAN gene from two unrelated Iranian families. METHODS: Clinical and imaging data of patients were recorded and evaluated, retrospectively. Whole-exome sequencing (WES) was undertaken in order to detect disease-causing variants in participants. Confirmation of a causative variant in all three patients and their parents was carried out using Sanger sequencing and segregation analysis. In addition, for comparing to our cases, we reviewed all relevant clinical data of previously published cases of GAN between the years 2013-2020. RESULTS: Three patients from two unrelated families were included. Using WES, we identified a novel nonsense variant [NM_022041.3:c.1162del (p.Leu388Ter)], in a 7-year-old boy of family 1, and a likely pathogenic missense variant [NM_022041.3:c.370T>A (p.Phe124Ile)], in two affected siblings of the family 2. Clinical examination revealed typical features of GAN-1 in all three patients, including walking difficulties, ataxic gait, kinky hair, sensory-motor polyneuropathy, and nonspecific neuroimaging abnormalities. Review of 63 previously reported cases of GAN indicated unique kinky hair, gait problem, hyporeflexia/areflexia, and sensory impairment were the most commonly reported clinical features. CONCLUSIONS: One homozygous nonsense variant and one homozygous missense variant in the GAN gene were discovered for the first time in two unrelated Iranian families that expand the mutation spectrum of GAN. Imaging findings are nonspecific, but the electrophysiological study in addition to history is helpful to achieve the diagnosis. The molecular test confirms the diagnosis.


Asunto(s)
Neuropatía Axonal Gigante , Enfermedades del Sistema Nervioso Periférico , Masculino , Humanos , Niño , Neuropatía Axonal Gigante/diagnóstico , Neuropatía Axonal Gigante/genética , Neuropatía Axonal Gigante/patología , Irán , Estudios Retrospectivos , Proteínas del Citoesqueleto/genética , Mutación , Enfermedades del Sistema Nervioso Periférico/genética
8.
Orphanet J Rare Dis ; 18(1): 177, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37403138

RESUMEN

BACKGROUND: Phospholipase-associated neurodegeneration (PLAN) caused by mutations in the PLA2G6 gene is a rare neurodegenerative disorder that presents with four sub-groups. Infantile neuroaxonal dystrophy (INAD) and PLA2G6-related dystonia-parkinsonism are the main two subtypes. In this cohort, we reviewed clinical, imaging, and genetic features of 25 adult and pediatric patients harboring variants in the PLA2G6. METHODS: An extensive review of the patients' data was carried out. Infantile Neuroaxonal Dystrophy Rating Scale (INAD-RS) was used for evaluating the severity and progression of INAD patients. Whole-exome sequencing was used to determine the disease's underlying etiology followed by co-segregation analysis using Sanger sequencing. In silico prediction analysis based on the ACMG recommendation was used to assess the pathogenicity of genetic variants. We aimed to survey a genotype-genotype correlation in PLA2G6 considering all reported disease-causing variants in addition to our patients using the HGMD database and the chi-square statistical approach. RESULTS: Eighteen cases of INAD and 7 cases of late-onset PLAN were enrolled. Among 18 patients with INAD, gross motor regression was the most common presenting symptom. Considering the INAD-RS total score, the mean rate of progression was 0.58 points per month of symptoms (Standard error 0.22, lower 95% - 1.10, and upper 95% - 0.15). Sixty percent of the maximum potential loss in the INAD-RS had occurred within 60 months of symptom onset in INAD patients. Among seven adult cases of PLAN, hypokinesia, tremor, ataxic gate, and cognitive impairment were the most frequent clinical features. Various brain imaging abnormalities were also observed in 26 imaging series of these patients with cerebellar atrophy being the most common finding in more than 50%. Twenty unique variants in 25 patients with PLAN were detected including nine novel variants. Altogether, 107 distinct disease-causing variants from 87 patient were analyzed to establish a genotype-phenotype correlation. The P value of the chi-square test did not indicate a significant relationship between age of disease onset and the distribution of reported variants on PLA2G6. CONCLUSION: PLAN presents with a wide spectrum of clinical symptoms from infancy to adulthood. PLAN should be considered in adult patients with parkinsonism or cognition decline. Based on the current knowledge, it is not possible to foresee the age of disease onset based on the identified genotype.


Asunto(s)
Distrofias Neuroaxonales , Trastornos Parkinsonianos , Adulto , Niño , Humanos , Genotipo , Fosfolipasas A2 Grupo VI/genética , Mutación/genética , Distrofias Neuroaxonales/genética , Trastornos Parkinsonianos/genética , Fenotipo
9.
Acta Neurol Belg ; 122(5): 1201-1210, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34120322

RESUMEN

Homozygous or compound heterozygous mutations in the NAD(P)HX epimerase (NAXE) gene, cause early-onset progressive encephalopathy with brain edema and/or leukoencephalopathy 1. This disorder is characterized by psychomotor regression, hypotonia, ataxia, respiratory insufficiency, tetraparesis, and seizures, leading to coma and death in early childhood. In this study, whole-exome sequencing was used to identify the pathogenic variant, followed by confirmation of identified variant in the proband and segregation analysis in the family by Sanger sequencing. Several in-silico prediction tools were employed to provide additional evidences on the pathogenicity of the identified variant. The proband was an affected 3-year-old boy presented with encephalopathy and developmental regression from Ardebil province, northwest of Iran. Additional clinical features were cognitive regression and a high level of lactate in CSF. The clinical presentation was suggestive of a mitochondrial disorder. In addition, his brother died at the age of 20 months old due to encephalopathy, seizures, developmental regression, and loss of consciousness. We found a novel homozygous missense variant within the NAXE gene, [NM_144772.3:c.565G > A; p.(Gly189Ser)]. Applying different in-silico prediction tools and bioinformatics databases analysis showed that this variant is damaging. So far, seven mutations have been reported in the NAXE gene. In this study, we report the first mutation in the Iranian population and the eighth one in total for this gene.


Asunto(s)
Edema Encefálico , Leucoencefalopatías , Racemasas y Epimerasas , Preescolar , Humanos , Lactante , Masculino , Edema Encefálico/diagnóstico por imagen , Edema Encefálico/genética , Irán , Lactatos , Leucoencefalopatías/complicaciones , Leucoencefalopatías/diagnóstico por imagen , Leucoencefalopatías/genética , Mutación Missense , NAD/metabolismo , Linaje , Racemasas y Epimerasas/genética , Convulsiones/genética
10.
J Mol Neurosci ; 72(5): 1125-1132, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35275351

RESUMEN

INTRODUCTION: Coenzyme Q10 deficiency can be due to mutations in Coenzyme Q10-biosynthesis genes (primary) or genes unrelated to biosynthesis (secondary). Primary Coenzyme Q10 deficiency-4 (COQ10D4), also known as autosomal recessive spinocerebellar ataxia-9 (SCAR9), is an autosomal recessive disorder caused by mutations in the ADCK3 gene. This disorder is characterized by several clinical manifestations such as severe infantile multisystemic illness, encephalomyopathy, isolated myopathy, cerebellar ataxia, or nephrotic syndrome. METHODS: In this study, whole-exome sequencing was performed in order to identify disease-causing variants in an affected girl with developmental regression and Epilepsia Partialis Continua (EPC). Next, Sanger sequencing method was used to confirm the identified variant in the patient and segregation analysis in her parents. CASE PRESENTATION: The proband is an affected 11-year-old girl with persistent seizures, EPC, and developmental regression including motor, cognition, and speech. Seizures were not controlled with various anticonvulsant drugs despite adequate dosing. Progressive cerebellar atrophy, stroke-like cortical involvement, multifocal hyperintense bright objects, and restriction in diffusion-weighted imaging (DWI) were seen in the brain magnetic resonance imaging (MRI). CONCLUSIONS: A novel homozygous missense variant [NM_020247.5: c.814G>T; (p.Gly272Cys)] was identified within the ADCK3 gene, which is the first mutation in this gene in the Iranian population. Bioinformatics analysis showed this variant is damaging. Based on our patient, clinicians should consider genetic testing earlier to instant diagnosis and satisfactory treatment based on exact etiology to prevent further neurologic sequelae.


Asunto(s)
Epilepsia Parcial Continua , Enfermedades Mitocondriales , Ataxia/genética , Niño , Epilepsia Parcial Continua/genética , Femenino , Humanos , Irán , Enfermedades Mitocondriales/genética , Debilidad Muscular , Ubiquinona/deficiencia
11.
J Mol Neurosci ; 72(5): 1098-1107, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35218518

RESUMEN

This manuscript aimed to determine the underlying point mutations causing Duchenne muscular dystrophy (DMD) in a heterogeneous group of Iranian patients, who are clinically suspected. Whole-exome sequencing was utilized to detect disease-causing variants in 40 MLPA-negative DMD patients. Disease-causing variants were detected in the DMD gene in 36/40 of the patients (90%), and 4/40 of them (10%) remained undiagnosed. WES analysis revealed that nonsense variant was the most common type in our study (23/36 of the cases). Besides, 12/36 of the cases had frameshift variant, and one of the patients had a likely pathogenic splice variant in the DMD gene. Carrier testing revealed that 21/40 of the mothers had the identified variant. Therefore, most variants were inherited (58.3%), while 19/40 were de novo (41. 7%). The present study has demonstrated the importance of performing WES to detect disease-causing point mutations in MLPA-negative DMD patients and to identify carrier females. Due to regulatory challenges, the clinical development of therapeutic approaches is time-consuming and may not be available to all patients shortly. Therefore, it appears that the techniques used to accurately detect disease-causing variants in carrier mothers are a more efficient solution to prevent the increased prevalence of DMD.


Asunto(s)
Distrofia Muscular de Duchenne , Femenino , Pruebas Genéticas , Humanos , Irán , Distrofia Muscular de Duchenne/genética , Mutación , Secuenciación del Exoma
12.
J Mol Neurosci ; 72(4): 719-729, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34982360

RESUMEN

Autosomal recessive microcephaly is a rare clinical condition, which is characterized by reduced brain size that can be associated with delayed intellectual ability, developmental delay, and seizure. In this study, we describe two siblings with microcephaly: a 12-year-old girl with primary microcephaly, and a 7-year-old boy with secondary microcephaly, whose episodes of seizure and neurodevelopmental regression started at 6 years and 6 months of age, respectively. The interesting finding in these siblings was two different presentations of the same variant: one case with primary and one case with secondary microcephaly. Whole-exome sequencing was performed in order to identify causative variants in one family having two affected siblings with microcephaly. Confirmation of the identified variant in the ZNF335 gene in the proband and her affected brother and segregation analysis in the family were performed using the Sanger sequencing method. In both patients, a novel homozygous missense variant, [NM_022095.4: c.3346G>A; p.(Gly1116Arg)], in the ZNF335 gene was identified. The p.(Gly1116Arg) variant causes a defect in the last zinc finger domain of the protein. Conservation analysis by ConSurf server and UCSC genome browser revealed that Gly1116 is a highly conserved amino acid among different species. Different in-silico prediction tools and bioinformatics analysis predicted this variant as damaging.


Asunto(s)
Microcefalia , Hermanos , Niño , Proteínas de Unión al ADN/genética , Femenino , Homocigoto , Humanos , Masculino , Microcefalia/genética , Mutación Missense , Linaje , Convulsiones/genética , Factores de Transcripción/genética
13.
Mol Genet Genomic Med ; 9(11): e1834, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34636477

RESUMEN

BACKGROUND: 3MC syndrome type 3 is an autosomal recessive disorder caused by mutations in the COLEC10 gene besides other genes like COLEC11 and MASP1. This disorder is characterized by facial dysmorphism, cleft lip and palate, postnatal growth deficiency, cognitive impairment, hearing loss, craniosynostosis, radioulnar synostosis, genital and vesicorenal anomalies, cardiac anomalies, caudal appendage, and umbilical hernia. METHODS: In the present study, whole-exome sequencing was performed in order to identify disease causing variant in an Iranian 7-year-old affected girl with craniosynostosis, dolichocephaly, blepharoptosis, clinodactyly of the 5th finger, high myopia, long face, micrognathia, patent ductus arteriosus, downslanted palpebral fissures, telecanthus, and epicanthus inversus. Identified variant confirmation in the patient and segregation analysis in her family were performed using Sanger sequencing method. RESULTS: A novel homozygous frameshift deletion variant [NM_006438.5: c.128_129delCA; p.(Thr43AsnfsTer9)] was identified within the COLEC10 gene. Up to now, only three 3MC syndrome patients with mutations in the COLEC10 gene have been reported, and here, we report the fourth patient and the first homozygous frameshift variant. CONCLUSION: Other genes and factors responsible for 3MC syndrome occurrence are remained to be discovered. We believe further investigation of the genes in the lectin complement pathway is needed to be done for the identification of other causes of this disease.


Asunto(s)
Labio Leporino , Fisura del Paladar , Niño , Labio Leporino/genética , Fisura del Paladar/genética , Colectinas/genética , Colectinas/metabolismo , Femenino , Humanos , Irán , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/genética , Secuenciación del Exoma
14.
Acta Neurol Belg ; 121(1): 143-151, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33175337

RESUMEN

Muscular dystrophy-dystroglycanopathies are autosomal recessive neurologic disorders, caused by homozygous or compound heterozygous mutations in the POMGNT1 gene-encoding protein O-mannose beta-1,2-N-acetylglucosaminyl transferase. This type of muscular dystrophy is characterized by early-onset muscle weakness, gait ataxia, microcephaly, and developmental delay.We performed whole-exome sequencing to detect the disease-causing variants in a 4 year-old boy. Afterwards, Sanger sequencing was performed to confirm the detected variant in the patient and his family. We evaluated a 4 year-old Iranian boy presented with delayed speech and language development, gait ataxia, global developmental delay, motor delay, neurodevelopmental delay, postnatal microcephaly and strabismus. His parents were first cousins, and the mother had a history of spontaneous abortion. In this study, we report a novel missense c.386G > A; p.(Arg129Gln) variant in the POMGNT1 gene which was confirmed by Sanger sequencing in the patient and segregated with the disease in the family.


Asunto(s)
Distroglicanos/genética , Variación Genética/genética , Distrofias Musculares/genética , Mutación Missense/genética , N-Acetilglucosaminiltransferasas/genética , Preescolar , Humanos , Irán , Masculino , Distrofias Musculares/diagnóstico , Linaje , Estructura Secundaria de Proteína
16.
Int J Mol Cell Med ; 5(1): 30-6, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27386436

RESUMEN

Colorectal cancer remains one of the major cancer- related deaths despite progress in the treatment during past decades. Detection of disease at earlier stages reduces its mortality. The aim of current study was to investigate expression of Cytokeratin 19 (CK19), Cytokeratin 20 (CK20) and Guanylyl Cyclase C (GCC) mRNA in peripheral blood of non- metastatic colorectal cancer patients which may result into introducing of an early detection test. 25 patients with colorectal cancer and 25 healthy controls were recruited. Blood was obtained from all individuals. Expression of CK19 and CK20 and GCC mRNA and 18SrRNA (as reference gene) were determined based on real- time RT-PCR on total RNA from blood. CK19, CK20 and GCC expression had been detected in 68%, 76% & 52% of patient group, respectively, which was higher than healthy group, with 8%, 32% and 0% expression, respectively (p<0.05). CK20 was over-expressed 8- fold more in patients compared to controls. Similar result was found for CK19 with 4- fold over- expression. Sensitivity and specificity of combination of markers were 88% and 68%, respectively. Current data suggest that the detection of CK20 & CK19 as relative sensitive markers may become a valuable tool for primary diagnosis of colorectal cancer in early stages. GCC could be considered as a specific tumor marker for detection of colorectal cancer. Higher expression of these markers in patients may be considered as a relative good tool for the diagnosis of disease in non- metastatic stages.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA