RESUMEN
Employing atomistic molecular dynamics simulations, we investigate the ionic conductivity mechanisms in a partially blocked nanopore containing a centrally positioned spherical constriction, exploring the effects of pore diameter, surface charge, and blockage size. Our results show that ionic mobilities are significantly influenced by the polarity of the surface charge and the size of the pore gap. Particularly, we observe ion-specific effects for K+ and Cl- ions based on their size and charge, especially in sub-nanometer pore gaps. Furthermore, we find that the current flow in partially blocked nanopores sensitively depends on the surface charges, consistent with the calculated free energy profiles. The percentage of the current drop is found to be correlated to the volume of the spherical constriction with the effects more pronounced when the sizes of the spherical blockage and nanopore are comparable.
RESUMEN
Primordial germ cells (PGCs) are pivotal for gonadal development and reproductive success. Though artificial induction of sterility by targeting PGCs are gaining popularity due to its advantages in fish surrogacy and biodiversity management, it is often skill and time intensive. In this study, we have focused on understanding the role of PGCs and the chemotactic SDF-1/CXCR4 signaling on gonad development of Japanese anchovy (JA, Engraulis japonicus), an upcoming marine model organism with eco-commercial values, with an aim to develop a novel, easy, and versatile gonad sterilization method. Our data showed that PGC migration related genes, i.e., sdf-1a, sdf-1b, cxcr4a, cxcr4b and vasa, are phylogenetically closer relatives of respective herring (Clupea harengus) and zebrafish (Danio rerio) homolog. Subsequently, PGC marking and live tracing experiments confirmed that PGC migration in JA initiates from 16 hours post fertilization (hpf) followed by PGC settlement in the gonadal ridge at 44 hpf. We found that overexpression of zebrafish sdf-1a mRNA in the germ cell suppresses cxcr4a and increases cxcr4b transcription at 8 hpf, dose dependently disrupts PGC migration at 24-48 hpf, induces PGC death and upregulates sdf-1b at 5 days post hatching. 48 h of immersion treatment with CXCR4 antagonist (AMD3100, Abcam) also accelerated PGC mismigration and pushed the PGC away from gonadal ridge in a dose responsive manner, and further when grown to adulthood caused germ cell less gonad formation in some individuals. Cumulatively, our data, for the first time, suggests that JA PGC migration is largely regulated by SDF1/CXCR4 signaling, and modulation of this signaling has strong potential for sterile, germ cell less gonad preparation at a mass scale. However, further in-depth analysis is pertinent to apply this methodology in marine fish species to successfully catapult Japanese anchovy into a true marine fish model.
Asunto(s)
Gónadas , Mesodermo , Animales , Movimiento Celular , Células Germinativas/metabolismo , Gónadas/embriología , Japón , Pez CebraRESUMEN
We investigate the effect of pectin on the structure and ion transport properties of the room-temperature ionic liquid electrolyte 1-n-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) using molecular dynamics simulations. We find that pectin induces intriguing structural changes in the electrolyte that disrupt large ionic aggregates and promote the formation of smaller ionic clusters, which is a promising finding for ionic conductivity. Due to pectin in [BMIM][PF6] electrolytes, the diffusion coefficient of cations and anions is observed to decrease by a factor of four for a loading of 25 wt. % of pectin in [BMIM][PF6] electrolyte. A strong correlation between the ionic diffusivities (D) and ion-pair relaxation timescales (τc) is observed such that D â¼ τc-0.75 for cations and D â¼ τc-0.82 for anions. The relaxation timescale exponents indicate that the ion transport mechanisms in pectin-[BMIM][PF6] electrolytes are slightly distinct from those found in neat [BMIM][PF6] electrolytes (Dâ¼τc-1). Since pectin marginally affects ionic diffusivities at the gain of smaller ionic aggregates and viscosity, our results suggest that pectin-ionic liquid electrolytes offer improved properties for battery applications, including ionic conductivity, mechanical stability, and biodegradability.
RESUMEN
We report the ion transport mechanisms in succinonitrile (SN) loaded solid polymer electrolytes containing polyethylene oxide (PEO) and dissolved lithium bis(trifluoromethane)sulphonamide (LiTFSI) salt using molecular dynamics simulations. We investigated the effect of temperature and loading of SN on ion transport and relaxation phenomenon in PEO-LiTFSI electrolytes. It is observed that SN increases the ionic diffusivities in PEO-based solid polymer electrolytes and makes them suitable for battery applications. Interestingly, the diffusion coefficient of TFSI ions is an order of magnitude higher than the diffusion coefficient of lithium ions across the range of temperatures and loadings investigated. By analyzing different relaxation timescales and examining the underlying transport mechanisms in SN-loaded systems, we find that the diffusivity of TFSI ions correlates excellently with the Li-TFSI ion-pair relaxation timescales. In contrast, our simulations predict distinct transport mechanisms for Li-ions in SN-loaded PEO-LiTFSI electrolytes. Explicitly, the diffusivity of lithium ions cannot be uniquely determined by the ion-pair relaxation timescales but additionally depends on the polymer segmental dynamics. On the other hand, the SN loading induced diffusion coefficient at a given temperature does not correlate with either the ion-pair relaxation timescales or the polymer segmental relaxation timescales.
RESUMEN
Germ cells are pivotal for gonadal sexuality maintenance and reproduction. Sex lethal (sxl), the somatic sex determining gene of Drosophila, is the known regulator and initiator of germ cell femininity in invertebrates. However, the role of the Sxl homologue has rarely been investigated in vertebrates. So, we used medaka to clarify the role of sxl in vertebrate gonadogenesis and sexuality and identified two Sxl homologues, i.e., Sxl1a and Sxl1b. We found that sxl1a specifically expresses in the primordial germ cells (PGC), ovary, (early gonia and oocytes), while sxl1b distributions are ubiquitous. An mRNA overexpression of sxl1a accelerated germ cell numbers in 10 DAH XY fish, and sxl1a knockdown (KD), on the other hand, induced PGC mis-migration, aberrant PGC structuring and ultimately caused significant germ cell reduction in XX fish. Using an in vitro promoter analysis and in vivo steroid treatment, we found a strong link between sxl1a and estrogenic germ cell-population maintenance. Further, using sxl1a-KD and erß2-knockout fish, we determined that sxl1 acts through erß2 and controls PGC sexuality. Cumulatively, our study highlights the novel role of sxl1a in germ cell maintenance and sexual identity assignment and thus might become a steppingstone to understanding the commonalities of animal sexual development.
Asunto(s)
Oryzias , Animales , Femenino , Oryzias/genética , Genes Letales , Gónadas , Diferenciación Sexual , Ovario , Células GerminativasRESUMEN
The complement system plays an important role in immune regulation and acts as the first line of defense against any pathogenic attack. To comprehend the red sea bream (Pagrus major) immune response, three complement genes, namely, pmC1r, pmMASP and pmC3, belonging to the classical, lectin and alternative complement cascade, respectively, were identified and characterized. pmC1r, pmMASP, and pmC3 were comprised of 2535, 3352, and 5735 base mRNA which encodes 732, 1029 and 1677 aa putative proteins, respectively. Phylogenetically, all the three studied genes clustered with their corresponding homologous clade. Tissue distribution and cellular localization data demonstrated a very high prevalence of all the three genes in the liver. Both bacterial and viral infection resulted in significant transcriptional alterations in all three genes in the liver with respect to their vehicle control counterparts. Specifically, bacterial challenge affected the pmMASP and pmC3 expression, while the viral infection resulted in pmC1r and pmC3 mRNA activation. Altogether, our data demonstrate the ability of pmC1r, pmMASP and pmC3 in bringing about an immune response against any pathogenic encroachment, and thus activating, not only one, but all the three complement pathways, in red sea bream.
Asunto(s)
Proteínas del Sistema Complemento/genética , Proteínas del Sistema Complemento/inmunología , Enfermedades de los Peces/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Dorada/genética , Dorada/inmunología , Animales , Infecciones por Virus ADN/inmunología , Edwardsiella tarda/fisiología , Infecciones por Enterobacteriaceae/inmunología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Perfilación de la Expresión Génica/veterinaria , Iridoviridae/fisiología , FilogeniaRESUMEN
Dietary compromises, especially food restrictions, possess species-specific effects on the health status and infection control in several organisms, including fish. To understand the starvation-mediated physiological responses in Edwardsiella tarda infected red sea bream, especially in the liver, we performed a 20-day starvation experiment using 4 treatment (2 fed and 2 starved) groups, namely, fed-placebo, starved-placebo, fed-infected, and starved-infected, wherein bacterial exposure was done on the 11th day. In the present study, the starved groups showed reduced hepatosomatic index and drastic depletion in glycogen storage and vacuole formation. The fed-infected fish showed significant (P<0.05) increase in catalase and superoxide dismutase activity in relation to its starved equivalent. Significant (P<0.05) alteration in glucose and energy metabolism, as evident from hexokinase and glucose-6-phosphate dehydrogenase activity, was recorded in the starved groups. Interestingly, coinciding with the liver histology, PPAR (peroxisome proliferator activated receptors) α transcription followed a time-dependent activation in starved groups while PPARγ exhibited an opposite pattern. The transcription of hepcidin 1 and transferrin, initially increased in 0dai (days after infection) starved fish but reduced significantly (P<0.05) at later stages. Two-color immunohistochemistry and subsequent cell counting showed significant increase in P63-positive cells at 0dai and 5dai but later reduced slightly at 10dai. Similar results were also obtained in the lysosomal (cathepsin D) and non-lysosomal (ubiquitin) gene transcription level. All together, our data suggest that starvation exerts multidirectional responses, which allows for better physiological adaptations during any infectious period, in red sea bream.
Asunto(s)
Edwardsiella tarda/crecimiento & desarrollo , Infecciones por Enterobacteriaceae/fisiopatología , Enfermedades de los Peces/fisiopatología , Hígado/fisiopatología , Dorada/fisiología , Inanición , Animales , Catalasa/metabolismo , Edwardsiella tarda/fisiología , Metabolismo Energético , Infecciones por Enterobacteriaceae/metabolismo , Infecciones por Enterobacteriaceae/microbiología , Enfermedades de los Peces/metabolismo , Enfermedades de los Peces/microbiología , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Alimentos , Expresión Génica , Glucosa/metabolismo , Glucógeno/metabolismo , Interacciones Huésped-Patógeno , Hígado/metabolismo , Hígado/microbiología , PPAR alfa/genética , PPAR gamma/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Dorada/metabolismo , Dorada/microbiología , Superóxido Dismutasa/metabolismo , Vacuolas/metabolismoRESUMEN
Sulfuric acid (H2SO4), a highly reactive reagent containing intrinsic protonic charge carriers, has been studied via ab initio molecular dynamics simulations. Specifically, we explore the solvation shell structure of the protonic defects, H1SO4- and H3SO4+, as well as the underlying proton transport mechanisms in both the neat and hydrated H2SO4 solutions. Our findings reveal a significant contraction of the dynamic hydrogen-bonded network around the protonic defects, which resembles features seen in water. The simulations provide estimates of the structural relaxation time scales for proton release from both the covalent O-H bonds (â¼23 ps) and the hydrogen bonds (â¼0.4 ps). In contrast to water, our analysis of the proton transfer scenarios in sulfuric acid reveals correlated events mediated by the formation of longer (up to four) hydrogen-bonded Grotthuss chains.
RESUMEN
Benzalkonium chloride (BAC), a commonly used quaternary ammonium compound in various products like antiseptics, cosmetics, and disinfectants, has raised concerns due to its potential to contaminate aquatic environments and subsequently affect the reproductive performance of the organisms within those ecosystems. The article underscores a critical concern regarding the impact of BAC on aquatic ecosystems, particularly its effect on fish reproductive quality, using medaka (Oryzias latipes) as a model organism. Firstly, while measuring lethal dose of BAC in adult medaka, we observed a dose dependent mortality in BAC treated fish (100 and 200 ppm: 100%; 60 ppm: 51.7%; 30 ppm or less: no mortality at 24 h post treatment (hpt)) and calculated the LD50 at 96 hpt as 39.291 ppm (95% confidence interval: 28.817-53.570 ppm). Further, we assessed the molecular, cellular and histological changes through long-term exposure. Enlarged sperm pockets and reduced spermatocyte were seen in BAC exposed testis while no significant structural changes were observed in the ovaries. Following BAC exposure, drastic alterations in the gene expression and cellular localization related to sex, estrogen signaling, and autophagy were also noted from gonads and liver. Subsequently, using a short-term exposure analysis, we confirmed the sex and time responsive transcriptional kinetics and found that BAC sequentially affected the gonadal somatic cells followed by germ cell differentiation. Finally, using reproductively competent male and female medaka, we conducted progeny production and performance analysis and depicted a drastic reduction in fecundity, and fertilization and hatching rate, indicating adverse effects of BAC on reproductive success. Cumulatively, these findings emphasize the consequences of widespread use of BAC on reproductive security of aquatic animals and highlights the need for further research to comprehend the potential harm posed by such compounds to aquatic animal health and ecosystem integrity.
Asunto(s)
Compuestos de Benzalconio , Fertilidad , Oryzias , Contaminantes Químicos del Agua , Animales , Oryzias/fisiología , Compuestos de Benzalconio/toxicidad , Contaminantes Químicos del Agua/toxicidad , Masculino , Femenino , Fertilidad/efectos de los fármacos , Reproducción/efectos de los fármacos , Gónadas/efectos de los fármacos , Ovario/efectos de los fármacos , Testículo/efectos de los fármacosRESUMEN
Using all-atom molecular dynamics simulations, we report the structure and ion transport characteristics of a new class of solid polymer electrolytes that contain the biodegradable and mechanically stable biopolymer pectin. We used highly conducting ethylene carbonate (EC) as a solvent for simulating lithium-trifluoromethanesulfonimide (LiTFSI) salt containing different weight percentages of pectin. Our simulations reveal that the pectin chains reduce the coordination number of lithium ions around their counterions (and vice versa) because of stronger lithium-pectin interactions compared to lithium-TFSI interactions. Furthermore, the pectin is found to promote smaller ionic aggregates over larger ones, in contrast to the results typically reported for liquid and polymer electrolytes. We observed that the loading of pectin in EC-LiTFSI electrolytes increases their viscosity (η) and relaxation timescales (τc), indicating higher mechanical stability, and, consequently, a decrease of the mean squared displacement, diffusion coefficient (D), and Nernst-Einstein conductivity (σNE). Interestingly, while the lithium diffusivities are related to the ion-pair relaxation timescales as D+ â¼ τc-3.1, the TFSI- diffusivities exhibit excellent correlations with ion-pair relaxation timescales as D- â¼ τc-0.95. On the other hand, the NE conductivities are dictated by distinct transport mechanisms and scales with ion-pair relaxation timescales as σNE â¼ τc-1.85.
RESUMEN
SDF-1/CXCR4 chemokine signaling are indispensable for cell migration, especially the Primordial Germ Cell (PGC) migration towards the gonadal ridge during early development. We earlier found that this signaling is largely conserved in the Japanese anchovy (Engraulis japonicus, EJ), and a mere treatment of CXCR4 antagonist, AMD3100, leads to germ cell depletion and thereafter gonad sterilization. However, the effect of AMD3100 was limited. So, in this research, we scouted for CXCR4 antagonist with higher potency by employing advanced artificial intelligence deep learning-based computer simulations. Three potential candidates, AMD3465, WZ811, and LY2510924, were selected and in vivo validation was conducted using Japanese anchovy embryos. We found that seven transmembrane motif of EJ CXCR4a and EJ CXCR4b were extremely similar with human homolog while the CXCR4 chemokine receptor N terminal (PF12109, essential for SDF-1 binding) was missing in EJ CXCR4b. 3D protein analysis and cavity search predicted the cavity in EJ CXCR4a to be five times larger (6,307 ų) than that in EJ CXCR4b (1,241 ų). Docking analysis demonstrated lower binding energy of AMD3100 and AMD3465 to EJ CXCR4a (Vina score -9.6) and EJ CXCR4b (Vina score -8.8), respectively. Furthermore, we observed significant PGC mismigration in microinjected AMD3465 treated groups at 10, 100 and 1 × 105 nM concentration in 48 h post fertilized embryos. The other three antagonists showed various degrees of PGC dispersion, but no significant effect compared to their solvent control at tested concentrations was observed. Cumulatively, our results suggests that AMD3645 might be a better candidate for abnormal PGC migration in Japanese anchovy and warrants further investigation.
RESUMEN
BACKGROUND: In mammals, R-spondin (Rspo), an activator of the Wnt/ß-catenin signaling pathway, has been shown to be involved in ovarian differentiation. However, the role of the Rspo/Wnt/ß-catenin signaling pathway in fish gonads is still unknown. RESULTS: In the present study, full-length cDNAs of Rspo1, 2 and 3 were cloned from the gonads of medaka (Oryzias latipes). The deduced amino acid sequences of mRspo1-3 were shown to have a similar structural organization. Phylogenetic analysis showed that Rspo1, 2 and 3 were specifically clustered into three distinct clads. Tissue distribution revealed that three Rspo genes were abundantly expressed in the brain and ovary. Real-time PCR analysis around hatching (S33-5dah) demonstrated that three Rspo genes were specifically enhanced in female gonads from S38. In situ hybridization (ISH) analysis demonstrated that three Rspo genes were expressed in the germ cell in ovary, but not in testis. Fluorescence multi-color ISH showed that Rspo1 was expressed in both somatic cells and germ cells at 10dah. Exposure to ethinylestradiol (EE2) in XY individuals for one week dramatically enhanced the expression of three Rspo genes both at 0dah and in adulthood. CONCLUSIONS: These results suggest that the Rspo-activating signaling pathway is involved in the ovarian differentiation and maintenance in medaka.
Asunto(s)
Oryzias/embriología , Oryzias/metabolismo , Ovario/embriología , Trombospondinas/genética , Trombospondinas/metabolismo , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Diferenciación Celular/genética , Estradiol/análogos & derivados , Estradiol/farmacología , Femenino , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/biosíntesis , Péptidos y Proteínas de Señalización Intercelular/genética , Masculino , Ovario/metabolismo , Filogenia , Análisis de Secuencia de Proteína , Procesos de Determinación del Sexo , Testículo/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismoRESUMEN
Autophagy, or cellular self-digestion, is an essential cellular process imperative for energy homeostasis, development, differentiation, and survival. However, the intrinsic factors that bring about the sex-biased differences in liver autophagy are still unknown. In this work, we found that autophagic genes variably expresses in the steroidogenic tissues, mostly abundant in liver, and is influenced by the individual's sexuality. Starvation-induced autophagy in a time-dependent female-dominated manner, and upon starvation, a strong gender responsive circulating steroid-HK2 relation was observed, which highlighted the importance of estrogen in autophagy regulation. This was further confirmed by the enhanced or suppressed autophagy upon estrogen addition (male) or blockage (female), respectively. In addition, we found that estrogen proved to be the common denominator between stress management, glucose metabolism, and autophagic action in female fish. To understand further, we used estrogen receptor (ER)α- and ER-ß2-knockout (KO) medaka and found ER-specific differences in sex-biased autophagy. Interestingly, starvation resulted in significantly elevated mTOR transcription (compared with control) in male ERα-KO fish while HK2 and ULK activation was greatly decreased in both KO fish in a female oriented fashion. Later, ChIP analysis confirmed that, NRF2, an upstream regulator of mTOR, only binds to ERα, while both ERα and ERß2 are effectively pulled down the HK2 and LC3. FIHC data show that, in both ER-KO fish, LC3 nuclear-cytoplasmic transport and its associated pathways involving SIRT1 and DOR were greatly affected. Cumulatively, our data suggest that, ERα-KO strongly affected the early autophagic initiation and altered the LC3 nuclear-cytoplasmic translocation, thereby influencing the sex-biased final autophagosome formation in medaka. Thus, existence of steroid responsive autophagy regulatory-switches and sex-biased steroid/steroid receptor availability influences the gender-skewed autophagy. Expectedly, this study may furnish newer appreciation for gender-specific medicine research and therapeutics.
Asunto(s)
Autofagia , Receptor alfa de Estrógeno/metabolismo , Estrógenos/metabolismo , Hígado/metabolismo , Diferenciación Sexual , Animales , Femenino , Peces , Masculino , Receptores de Hormona Tiroidea/metabolismo , Sirtuina 1/metabolismo , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
In vertebrates, estrogen receptors are essential for estrogen-associated early gonadal sex development. Our previous studies revealed sexual dimorphic expression of estrogen receptor ß2 (ERß2) during embryogenesis of medaka, and here we investigated the functional importance of ERß2 in female gonad development and maintenance using a transgenerational ERß2-knockdown (ERß2-KD) line and ERß2-null mutants. We found that ERß2 reduction favored male-biased gene transcription, suppressed female-responsive gene expression, and affected SDF1a and CXCR4b co-assisted chemotactic primordial germ cell (PGC) migration. Co-overexpression of SDF1a and CXXR4b restored the ERß2-KD/KO associated PGC mismigration. Further analysis confirmed that curtailment of ERß2 increased intracellular Ca2+ concentration, disrupted intra- and extracellular calcium homeostasis, and instigated autophagic germ cell degradation and germ cell loss, which in some cases ultimately affected the XX female sexual development. This study is expected improve our understanding of germ cell maintenance and sex spectrum, and hence open new avenues for reproductive disorder management.
Asunto(s)
Receptor beta de Estrógeno/metabolismo , Proteínas de Peces/metabolismo , Gónadas/crecimiento & desarrollo , Diferenciación Sexual , Animales , Calcio/metabolismo , Proliferación Celular , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Embrión no Mamífero/metabolismo , Receptor beta de Estrógeno/antagonistas & inhibidores , Receptor beta de Estrógeno/genética , Femenino , Proteínas de Peces/antagonistas & inhibidores , Proteínas de Peces/genética , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/citología , Células Germinativas/metabolismo , Gónadas/metabolismo , Masculino , Oryzias/crecimiento & desarrollo , Oryzias/metabolismo , ARN sin Sentido/genética , ARN sin Sentido/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismoRESUMEN
Dietary regime modifications have been an integral part of health and healing practices throughout the animal kingdom. Thus, to assess the effects of periodic starvation and refeeding schedule on the physiological and immunological perturbations in Edwardsiella tarda infected red sea bream, we conducted a 20day experiment using 4 treatment groups, namely, pre-fed placebo (PFP); pre-starved placebo (PSP); pre-fed infected (PFI); and pre-starved infected (PSI), wherein a 5h E. tarda infection was done on the 11th day. In the present investigation, the pre-starved groups showed significant (P<0.05) alterations in the liver Hexokinase and Glucose-6-phosphatase activity. The pre-starved fish also exhibited significant (P<0.05) increment in the hepatosomatic index, along with increased hepatic glycogen content, in a time dependent fashion. The PPAR (peroxisome proliferator activated receptors)α transcription in the pre-starved group decreased significantly (P<0.05) by 10dai, while the PPARγ showcased a reverse pattern. The transcription of Hepcidin1 and Transferrin (iron homeostasis related genes), and Cathepsin D and Ubiquitin (programmed cell death related genes) portrayed a time responsive decrease and increase in PSI and PFI groups, respectively. Additionally, in comparison to the PFI group, the PSI fish demonstrated substantially reduced oxidative stress level. Fluorescent Immunohistochemistry showed significant (P<0.05) increase in p63 positive cells in the 10dai PFI fish in relation to the PSI group. Therefore, these findings provide new insight into the beneficial role of alternating starvation and refeeding schedule, preferably short-term starvation prior to an infection, in order to obtain better capability to battle against E. tarda infection in red sea bream.
Asunto(s)
Edwardsiella tarda , Infecciones por Enterobacteriaceae/veterinaria , Métodos de Alimentación/veterinaria , Enfermedades de los Peces/prevención & control , Perciformes , Inanición/veterinaria , Animales , Infecciones por Enterobacteriaceae/prevención & control , Inmunohistoquímica , Estrés Oxidativo/fisiologíaRESUMEN
Environmental stressors, gonadal degenerative diseases and tumour development can significantly alter the oocyte physiology, and species fertility and fitness. To expand the molecular understanding about oocyte degradation, we isolated several spliced variants of Japanese anchovy hatching enzymes (AcHEs; ovastacin homologue) 1 and 2, and analysed their potential in oocyte sustenance. Particularly, AcHE1b, an ovary-specific, steroid-regulated, methylation-dependent, stress-responsive isoform, was neofunctionalized to regulate autophagic oocyte degeneration. AcHE1a and 2 triggered apoptotic degeneration in vitellogenic and mature oocytes, respectively. Progesterone, starvation, and high temperature elevated the total degenerating oocyte population and AcHE1b transcription by hyper-demethylation. Overexpression, knockdown and intracellular zinc ion chelation study confirmed the functional significance of AcHE1b in autophagy induction, possibly to mitigate the stress effects in fish, via ion-homeostasis. Our finding chronicles the importance of AcHEs in stress-influenced apoptosis/autophagy cell fate decision and may prove significant in reproductive failure assessments, gonadal health maintenance and ovarian degenerative disease therapy.
Asunto(s)
Gónadas/química , Metaloendopeptidasas/química , Oocitos/química , Isoformas de Proteínas/genética , Animales , Apoptosis , Autofagia , Linaje de la Célula/genética , Fragmentación del ADN , Fertilidad/genética , Gónadas/crecimiento & desarrollo , Metaloendopeptidasas/genética , Oocitos/crecimiento & desarrollo , Progesterona/genética , Isoformas de Proteínas/química , Proteolisis , Vertebrados/crecimiento & desarrolloRESUMEN
In contrast to our understanding of testicular differentiation, ovarian differentiation is less well understood in vertebrates. In mammals, R-spondin1 (Rspo1), an activator of Wnt/ß-catenin signaling pathway, is located upstream of the female sex determination pathway. However, the functions of Rspo1 in ovarian differentiation remain unclear in non-mammalian species. In order to elucidate the detailed functions of Rspo/Wnt signaling pathway in fish sex determination/differentiation, the ectopic expression of the Rspo1 gene was performed in XY medaka (Oryzias latipes). The results obtained demonstrated that the gain of Rspo1 function induced femininity in XY fish. The overexpression of Rspo1 enhanced Wnt4b and ß-catenin transcription, and completely suppressed the expression of male-biased genes (Dmy, Gsdf, Sox9a2 and Dmrt1) as well as testicular differentiation. Gonadal reprograming of Rspo1-over-expressed-XY (Rspo1-OV-XY) fish, induced the production of female-biased genes (Cyp19a1a and Foxl2), estradiol-17ß production and further female type secondary sexuality. Moreover, Rspo1-OV-XY females were fertile and produced successive generations. Promoter analyses showed that Rspo1 transcription was directly regulated by DM domain genes (Dmy, the sex-determining gene, and Dmrt1) and remained unresponsive to Foxl2. Taken together, our results strongly suggest that Rspo1 is sufficient to activate ovarian development and plays a decisive role in the ovarian differentiation in medaka.
Asunto(s)
Diferenciación Celular/fisiología , Proteínas de Peces/genética , Oryzias/crecimiento & desarrollo , Oryzias/genética , Ovario/fisiología , Diferenciación Sexual/genética , Animales , Diferenciación Celular/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Masculino , Oryzias/fisiología , Regiones Promotoras Genéticas/genética , Procesos de Determinación del Sexo/genética , Procesos de Determinación del Sexo/fisiología , Diferenciación Sexual/fisiología , Testículo/fisiología , Transcripción Genética/genética , Proteína Wnt4/genética , beta Catenina/genéticaRESUMEN
Interferon gamma (IFNγ) is an active player in estrogen dependent immuno-regulation of fish. The present work was aimed to characterize the alternatively spliced isoforms of IFNγ2 in the gonadal sex development in medaka. Phylogenetic analysis demonstrated that IFNγ2a and 2b were clustered with fish specific interferon gamma. Our in vitro promoter and mini-genome analysis data confirmed that alternative splicing of IFNγ2 is regulated by estrogens and androgens. Tissue distribution, quantitative PCR and ISH data demonstrated ubiquitous expression of IFNγ2a, while IFNγ2b was only expressed predominantly in female germ cells than males. This was further confirmed by germ cell specific GFP signals in the IFNγ2b-GFP over-expressed embryos and specific induction of IFNγ2b expression in the BrdU positive cells. All together our data suggest that steroid responsive alternatively spliced IFNγ2b isoforms might have some indirect roles in germ cell proliferation and thus can be an important candidate for immuno-reproductive interaction studies.
Asunto(s)
Empalme Alternativo/efectos de los fármacos , Proteínas de Peces/genética , Interferón gamma/genética , Oryzias/genética , Ovario/metabolismo , Testículo/metabolismo , Andrógenos/metabolismo , Andrógenos/farmacología , Animales , Proliferación Celular , Embrión no Mamífero , Estrógenos/metabolismo , Estrógenos/farmacología , Femenino , Proteínas de Peces/metabolismo , Interferón gamma/metabolismo , Masculino , Especificidad de Órganos , Oryzias/clasificación , Oryzias/crecimiento & desarrollo , Ovario/citología , Ovario/efectos de los fármacos , Filogenia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Factores Sexuales , Testículo/citología , Testículo/efectos de los fármacosRESUMEN
Probiotics play an important role in growth increment, immune enhancement and stress mitigation in fish. Increasing temperature is a major concern in present aquaculture practices as it markedly deteriorates the health condition and reduces the growth in fish. In order to explore the possibilities of using probiotics as a counter measure for temperature associated problems, a 30 days feeding trial was conducted to study the hemato-immunological and apoptosis response of Labeo rohita (8.3±0.4 g) reared at different water temperatures, fed with or without dietary supplementation of a probiotic mixture (PM) consisting of Bacillus subtilis, Lactococcus lactis and Saccharomyces cerevisiae) (1011 cfu kg(-1)). Three hundred and sixty fish were randomly distributed into eight treatment groups in triplicates, namely, T1(28°C+BF(Basal feed)+PM), T2(31°C+BF+PM), T3(34°C+BF+PM), T4(37°C+BF+PM), T5(28°C+BF), T6(31°C+BF), T7(34°C+BF) and T8(37°C+BF). A significant increase (P<0.01) in weight gain percentage was observed in the probiotic fed fish even when reared at higher water temperature (34-37°C). Respiratory burst assay, blood glucose, erythrocyte count, total serum protein, albumin, alkaline phosphatase and acid phosphatase were significantly higher (P<0.01) in the probiotic fed groups compared to the non-probiotic fed groups. A significant (P<0.01) effect of rearing temperature and dietary probiotic mixture on serum myeloperoxidase activity, HSP70 level and immunoglobulin production was observed. Degree of apoptosis in different tissues was also significantly reduced in probiotic-supplemented groups. Hence, the present results show that a dietary PM could be beneficial in enhancing the immune status of the fish and also help in combating the stress caused to the organism by higher rearing water temperature.