Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 110(1): 71-91, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36493769

RESUMEN

Cleft lip with or without cleft palate (CL/P) is a common birth defect with a complex, heterogeneous etiology. It is well established that common and rare sequence variants contribute to the formation of CL/P, but the contribution of copy-number variants (CNVs) to cleft formation remains relatively understudied. To fill this knowledge gap, we conducted a large-scale comparative analysis of genome-wide CNV profiles of 869 individuals from the Philippines and 233 individuals of European ancestry with CL/P with three primary goals: first, to evaluate whether differences in CNV number, amount of genomic content, or amount of coding genomic content existed within clefting subtypes; second, to assess whether CNVs in our cohort overlapped with known Mendelian clefting loci; and third, to identify unestablished Mendelian clefting genes. Significant differences in CNVs across cleft types or in individuals with non-syndromic versus syndromic clefts were not observed; however, several CNVs in our cohort overlapped with known syndromic and non-syndromic Mendelian clefting loci. Moreover, employing a filtering strategy relying on population genetics data that rare variants are on the whole more deleterious than common variants, we identify several CNV-associated gene losses likely driving non-syndromic clefting phenotypes. By prioritizing genes deleted at a rare frequency across multiple individuals with clefts yet enriched in our cohort of individuals with clefts compared to control subjects, we identify COBLL1, RIC1, and ARHGEF38 as clefting genes. CRISPR-Cas9 mutagenesis of these genes in Xenopus laevis and Danio rerio yielded craniofacial dysmorphologies, including clefts analogous to those seen in human clefting disorders.


Asunto(s)
Labio Leporino , Fisura del Paladar , Variaciones en el Número de Copia de ADN , Humanos , Labio Leporino/genética , Fisura del Paladar/genética , Estudio de Asociación del Genoma Completo , Factores de Intercambio de Guanina Nucleótido/genética , Fenotipo , Factores de Transcripción/genética
2.
Am J Hum Genet ; 109(1): 66-80, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34995504

RESUMEN

Alternate splicing events can create isoforms that alter gene function, and genetic variants associated with alternate gene isoforms may reveal molecular mechanisms of disease. We used subcutaneous adipose tissue of 426 Finnish men from the METSIM study and identified splice junction quantitative trait loci (sQTLs) for 6,077 splice junctions (FDR < 1%). In the same individuals, we detected expression QTLs (eQTLs) for 59,443 exons and 15,397 genes (FDR < 1%). We identified 595 genes with an sQTL and exon eQTL but no gene eQTL, which could indicate potential isoform differences. Of the significant sQTL signals, 2,114 (39.8%) included at least one proxy variant (linkage disequilibrium r2 > 0.8) located within an intron spanned by the splice junction. We identified 203 sQTLs that colocalized with 141 genome-wide association study (GWAS) signals for cardiometabolic traits, including 25 signals for lipid traits, 24 signals for body mass index (BMI), and 12 signals for waist-hip ratio adjusted for BMI. Among all 141 GWAS signals colocalized with an sQTL, we detected 26 that also colocalized with an exon eQTL for an exon skipped by the sQTL splice junction. At a GWAS signal for high-density lipoprotein cholesterol colocalized with an NR1H3 sQTL splice junction, we show that the alternative splice product encodes an NR1H3 transcription factor that lacks a DNA binding domain and fails to activate transcription. Together, these results detect splicing events and candidate mechanisms that may contribute to gene function at GWAS loci.


Asunto(s)
Empalme Alternativo , Factores de Riesgo Cardiometabólico , Regulación de la Expresión Génica , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Grasa Subcutánea/metabolismo , Sitios de Unión , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/metabolismo , Biología Computacional/métodos , Exones , Finlandia , Genes Reporteros , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genética de Población , Estudio de Asociación del Genoma Completo/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Receptores X del Hígado/genética , Masculino , Síndrome Metabólico/etiología , Síndrome Metabólico/metabolismo , Anotación de Secuencia Molecular , Fenotipo , Isoformas de Proteínas/genética , Sitios de Empalme de ARN , Proteínas de Unión al ARN
3.
Am J Hum Genet ; 109(10): 1727-1741, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36055244

RESUMEN

Transcriptomics data have been integrated with genome-wide association studies (GWASs) to help understand disease/trait molecular mechanisms. The utility of metabolomics, integrated with transcriptomics and disease GWASs, to understand molecular mechanisms for metabolite levels or diseases has not been thoroughly evaluated. We performed probabilistic transcriptome-wide association and locus-level colocalization analyses to integrate transcriptomics results for 49 tissues in 706 individuals from the GTEx project, metabolomics results for 1,391 plasma metabolites in 6,136 Finnish men from the METSIM study, and GWAS results for 2,861 disease traits in 260,405 Finnish individuals from the FinnGen study. We found that genetic variants that regulate metabolite levels were more likely to influence gene expression and disease risk compared to the ones that do not. Integrating transcriptomics with metabolomics results prioritized 397 genes for 521 metabolites, including 496 previously identified gene-metabolite pairs with strong functional connections and suggested 33.3% of such gene-metabolite pairs shared the same causal variants with genetic associations of gene expression. Integrating transcriptomics and metabolomics individually with FinnGen GWAS results identified 1,597 genes for 790 disease traits. Integrating transcriptomics and metabolomics jointly with FinnGen GWAS results helped pinpoint metabolic pathways from genes to diseases. We identified putative causal effects of UGT1A1/UGT1A4 expression on gallbladder disorders through regulating plasma (E,E)-bilirubin levels, of SLC22A5 expression on nasal polyps and plasma carnitine levels through distinct pathways, and of LIPC expression on age-related macular degeneration through glycerophospholipid metabolic pathways. Our study highlights the power of integrating multiple sets of molecular traits and GWAS results to deepen understanding of disease pathophysiology.


Asunto(s)
Estudio de Asociación del Genoma Completo , Transcriptoma , Bilirrubina , Carnitina , Glicerofosfolípidos , Humanos , Masculino , Metabolómica , Sitios de Carácter Cuantitativo/genética , Miembro 5 de la Familia 22 de Transportadores de Solutos/genética , Transcriptoma/genética
4.
Genet Epidemiol ; 47(1): 61-77, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36125445

RESUMEN

There is an increasing interest in using multiple types of omics features (e.g., DNA sequences, RNA expressions, methylation, protein expressions, and metabolic profiles) to study how the relationships between phenotypes and genotypes may be mediated by other omics markers. Genotypes and phenotypes are typically available for all subjects in genetic studies, but typically, some omics data will be missing for some subjects, due to limitations such as cost and sample quality. In this article, we propose a powerful approach for mediation analysis that accommodates missing data among multiple mediators and allows for various interaction effects. We formulate the relationships among genetic variants, other omics measurements, and phenotypes through linear regression models. We derive the joint likelihood for models with two mediators, accounting for arbitrary patterns of missing values. Utilizing computationally efficient and stable algorithms, we conduct maximum likelihood estimation. Our methods produce unbiased and statistically efficient estimators. We demonstrate the usefulness of our methods through simulation studies and an application to the Metabolic Syndrome in Men study.


Asunto(s)
Análisis de Mediación , Modelos Genéticos , Humanos , Genotipo , Simulación por Computador , Funciones de Verosimilitud , Algoritmos
5.
Am J Hum Genet ; 108(7): 1169-1189, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34038741

RESUMEN

Identifying the molecular mechanisms by which genome-wide association study (GWAS) loci influence traits remains challenging. Chromatin accessibility quantitative trait loci (caQTLs) help identify GWAS loci that may alter GWAS traits by modulating chromatin structure, but caQTLs have been identified in a limited set of human tissues. Here we mapped caQTLs in human liver tissue in 20 liver samples and identified 3,123 caQTLs. The caQTL variants are enriched in liver tissue promoter and enhancer states and frequently disrupt binding motifs of transcription factors expressed in liver. We predicted target genes for 861 caQTL peaks using proximity, chromatin interactions, correlation with promoter accessibility or gene expression, and colocalization with expression QTLs. Using GWAS signals for 19 liver function and/or cardiometabolic traits, we identified 110 colocalized caQTLs and GWAS signals, 56 of which contained a predicted caPeak target gene. At the LITAF LDL-cholesterol GWAS locus, we validated that a caQTL variant showed allelic differences in protein binding and transcriptional activity. These caQTLs contribute to the epigenomic characterization of human liver and help identify molecular mechanisms and genes at GWAS loci.


Asunto(s)
Cromatina/metabolismo , Hígado/metabolismo , Sitios de Carácter Cuantitativo , Secuencias de Aminoácidos , Sitios de Unión , Ensamble y Desensamble de Cromatina , Elementos de Facilitación Genéticos , Variación Genética , Estudio de Asociación del Genoma Completo , Humanos , Regiones Promotoras Genéticas , Unión Proteica , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Transcriptoma
6.
Genome Res ; 31(12): 2258-2275, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34815310

RESUMEN

Skeletal muscle accounts for the largest proportion of human body mass, on average, and is a key tissue in complex diseases and mobility. It is composed of several different cell and muscle fiber types. Here, we optimize single-nucleus ATAC-seq (snATAC-seq) to map skeletal muscle cell-specific chromatin accessibility landscapes in frozen human and rat samples, and single-nucleus RNA-seq (snRNA-seq) to map cell-specific transcriptomes in human. We additionally perform multi-omics profiling (gene expression and chromatin accessibility) on human and rat muscle samples. We capture type I and type II muscle fiber signatures, which are generally missed by existing single-cell RNA-seq methods. We perform cross-modality and cross-species integrative analyses on 33,862 nuclei and identify seven cell types ranging in abundance from 59.6% to 1.0% of all nuclei. We introduce a regression-based approach to infer cell types by comparing transcription start site-distal ATAC-seq peaks to reference enhancer maps and show consistency with RNA-based marker gene cell type assignments. We find heterogeneity in enrichment of genetic variants linked to complex phenotypes from the UK Biobank and diabetes genome-wide association studies in cell-specific ATAC-seq peaks, with the most striking enrichment patterns in muscle mesenchymal stem cells (∼3.5% of nuclei). Finally, we overlay these chromatin accessibility maps on GWAS data to nominate causal cell types, SNPs, transcription factor motifs, and target genes for type 2 diabetes signals. These chromatin accessibility profiles for human and rat skeletal muscle cell types are a useful resource for nominating causal GWAS SNPs and cell types.

7.
PLoS Genet ; 17(10): e1009865, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34699533

RESUMEN

Chromatin accessibility and gene expression in relevant cell contexts can guide identification of regulatory elements and mechanisms at genome-wide association study (GWAS) loci. To identify regulatory elements that display differential activity across adipocyte differentiation, we performed ATAC-seq and RNA-seq in a human cell model of preadipocytes and adipocytes at days 4 and 14 of differentiation. For comparison, we created a consensus map of ATAC-seq peaks in 11 human subcutaneous adipose tissue samples. We identified 58,387 context-dependent chromatin accessibility peaks and 3,090 context-dependent genes between all timepoint comparisons (log2 fold change>1, FDR<5%) with 15,919 adipocyte- and 18,244 preadipocyte-dependent peaks. Adipocyte-dependent peaks showed increased overlap (60.1%) with Roadmap Epigenomics adipocyte nuclei enhancers compared to preadipocyte-dependent peaks (11.5%). We linked context-dependent peaks to genes based on adipocyte promoter capture Hi-C data, overlap with adipose eQTL variants, and context-dependent gene expression. Of 16,167 context-dependent peaks linked to a gene, 5,145 were linked by two or more strategies to 1,670 genes. Among GWAS loci for cardiometabolic traits, adipocyte-dependent peaks, but not preadipocyte-dependent peaks, showed significant enrichment (LD score regression P<0.005) for waist-to-hip ratio and modest enrichment (P < 0.05) for HDL-cholesterol. We identified 659 peaks linked to 503 genes by two or more approaches and overlapping a GWAS signal, suggesting a regulatory mechanism at these loci. To identify variants that may alter chromatin accessibility between timepoints, we identified 582 variants in 454 context-dependent peaks that demonstrated allelic imbalance in accessibility (FDR<5%), of which 55 peaks also overlapped GWAS variants. At one GWAS locus for palmitoleic acid, rs603424 was located in an adipocyte-dependent peak linked to SCD and exhibited allelic differences in transcriptional activity in adipocytes (P = 0.003) but not preadipocytes (P = 0.09). These results demonstrate that context-dependent peaks and genes can guide discovery of regulatory variants at GWAS loci and aid identification of regulatory mechanisms.


Asunto(s)
Diferenciación Celular/genética , Cromatina/genética , Expresión Génica/genética , Sitios de Carácter Cuantitativo/genética , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Alelos , Desequilibrio Alélico/genética , Sitios de Unión/genética , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Cromatina/metabolismo , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Epigenómica/métodos , Técnicas Genéticas , Estudio de Asociación del Genoma Completo/métodos , Humanos , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , Regiones Promotoras Genéticas/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética
8.
Am J Hum Genet ; 106(1): 112-120, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31883642

RESUMEN

Whole-genome sequencing (WGS) can improve assessment of low-frequency and rare variants, particularly in non-European populations that have been underrepresented in existing genomic studies. The genetic determinants of C-reactive protein (CRP), a biomarker of chronic inflammation, have been extensively studied, with existing genome-wide association studies (GWASs) conducted in >200,000 individuals of European ancestry. In order to discover novel loci associated with CRP levels, we examined a multi-ancestry population (n = 23,279) with WGS (∼38× coverage) from the Trans-Omics for Precision Medicine (TOPMed) program. We found evidence for eight distinct associations at the CRP locus, including two variants that have not been identified previously (rs11265259 and rs181704186), both of which are non-coding and more common in individuals of African ancestry (∼10% and ∼1% minor allele frequency, respectively, and rare or monomorphic in 1000 Genomes populations of East Asian, South Asian, and European ancestry). We show that the minor (G) allele of rs181704186 is associated with lower CRP levels and decreased transcriptional activity and protein binding in vitro, providing a plausible molecular mechanism for this African ancestry-specific signal. The individuals homozygous for rs181704186-G have a mean CRP level of 0.23 mg/L, in contrast to individuals heterozygous for rs181704186 with mean CRP of 2.97 mg/L and major allele homozygotes with mean CRP of 4.11 mg/L. This study demonstrates the utility of WGS in multi-ethnic populations to drive discovery of complex trait associations of large effect and to identify functional alleles in noncoding regulatory regions.


Asunto(s)
Pueblo Asiatico/genética , Población Negra/genética , Proteína C-Reactiva/genética , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Población Blanca/genética , Secuenciación Completa del Genoma/métodos , Estudios de Cohortes , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo , Humanos , Desequilibrio de Ligamiento
9.
PLoS Genet ; 16(9): e1009018, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32925908

RESUMEN

Reverse causality has made it difficult to establish the causal directions between obesity and prediabetes and obesity and insulin resistance. To disentangle whether obesity causally drives prediabetes and insulin resistance already in non-diabetic individuals, we utilized the UK Biobank and METSIM cohort to perform a Mendelian randomization (MR) analyses in the non-diabetic individuals. Our results suggest that both prediabetes and systemic insulin resistance are caused by obesity (p = 1.2×10-3 and p = 3.1×10-24). As obesity reflects the amount of body fat, we next studied how adipose tissue affects insulin resistance. We performed both bulk RNA-sequencing and single nucleus RNA sequencing on frozen human subcutaneous adipose biopsies to assess adipose cell-type heterogeneity and mitochondrial (MT) gene expression in insulin resistance. We discovered that the adipose MT gene expression and body fat percent are both independently associated with insulin resistance (p≤0.05 for each) when adjusting for the decomposed adipose cell-type proportions. Next, we showed that these 3 factors, adipose MT gene expression, body fat percent, and adipose cell types, explain a substantial amount (44.39%) of variance in insulin resistance and can be used to predict it (p≤2.64×10-5 in 3 independent human cohorts). In summary, we demonstrated that obesity is a strong determinant of both prediabetes and insulin resistance, and discovered that individuals' adipose cell-type composition, adipose MT gene expression, and body fat percent predict their insulin resistance, emphasizing the critical role of adipose tissue in systemic insulin resistance.


Asunto(s)
Tejido Adiposo/metabolismo , Resistencia a la Insulina/fisiología , Obesidad/genética , Adipocitos/metabolismo , Adiposidad , Adulto , Índice de Masa Corporal , Estudios de Cohortes , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Humanos , Resistencia a la Insulina/genética , Masculino , Persona de Mediana Edad , Obesidad/fisiopatología , Estado Prediabético/metabolismo , Estado Prediabético/fisiopatología , Grasa Subcutánea/metabolismo
10.
PLoS Genet ; 16(9): e1009019, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32915782

RESUMEN

Loci identified in genome-wide association studies (GWAS) can include multiple distinct association signals. We sought to identify the molecular basis of multiple association signals for adiponectin, a hormone involved in glucose regulation secreted almost exclusively from adipose tissue, identified in the Metabolic Syndrome in Men (METSIM) study. With GWAS data for 9,262 men, four loci were significantly associated with adiponectin: ADIPOQ, CDH13, IRS1, and PBRM1. We performed stepwise conditional analyses to identify distinct association signals, a subset of which are also nearly independent (lead variant pairwise r2<0.01). Two loci exhibited allelic heterogeneity, ADIPOQ and CDH13. Of seven association signals at the ADIPOQ locus, two signals colocalized with adipose tissue expression quantitative trait loci (eQTLs) for three transcripts: trait-increasing alleles at one signal were associated with increased ADIPOQ and LINC02043, while trait-increasing alleles at the other signal were associated with decreased ADIPOQ-AS1. In reporter assays, adiponectin-increasing alleles at two signals showed corresponding directions of effect on transcriptional activity. Putative mechanisms for the seven ADIPOQ signals include a missense variant (ADIPOQ G90S), a splice variant, a promoter variant, and four enhancer variants. Of two association signals at the CDH13 locus, the first signal consisted of promoter variants, including the lead adipose tissue eQTL variant for CDH13, while a second signal included a distal intron 1 enhancer variant that showed ~2-fold allelic differences in transcriptional reporter activity. Fine-mapping and experimental validation demonstrated that multiple, distinct association signals at these loci can influence multiple transcripts through multiple molecular mechanisms.


Asunto(s)
Adiponectina/genética , Adiponectina/metabolismo , Tejido Adiposo/metabolismo , Alelos , Cadherinas/genética , Cadherinas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Frecuencia de los Genes/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/métodos , Humanos , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Masculino , Síndrome Metabólico/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Br J Cancer ; 126(4): 640-651, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34703007

RESUMEN

BACKGROUND: Irinotecan (CPT-11) is an anticancer agent widely used to treat adult solid tumours. Large interindividual variability in the clearance of irinotecan and SN-38, its active and toxic metabolite, results in highly unpredictable toxicity. METHODS: In 217 cancer patients treated with intravenous irinotecan single agent or in combination, germline DNA was used to interrogate the variation in 84 genes by next-generation sequencing. A stepwise analytical framework including a population pharmacokinetic model with SNP- and gene-based testing was used to identify demographic/clinical/genetic factors that influence the clearance of irinotecan and SN-38. RESULTS: Irinotecan clearance was influenced by rs4149057 in SLCO1B1, body surface area, and co-administration of 5-fluorouracil/leucovorin/bevacizumab. SN-38 clearance was influenced by rs887829 in UGT1A1, pre-treatment total bilirubin, and EGFR rare variant burden. Within each UGT1A1 genotype group, elevated pre-treatment total bilirubin and/or presence of at least one rare variant in EGFR resulted in significantly lower SN-38 clearance. The model reduced the interindividual variability in irinotecan clearance from 38 to 34% and SN-38 clearance from 49 to 32%. CONCLUSIONS: This new model significantly reduced the interindividual variability in the clearance of irinotecan and SN-38. New genetic factors of variability in clearance have been identified.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Glucuronosiltransferasa/genética , Irinotecán/farmacocinética , Neoplasias/genética , Análisis de Secuencia de ADN/métodos , Administración Intravenosa , Adulto , Anciano , Anciano de 80 o más Años , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Ensayos Clínicos como Asunto , Receptores ErbB/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Irinotecán/efectos adversos , Transportador 1 de Anión Orgánico Específico del Hígado , Masculino , Persona de Mediana Edad , Neoplasias/tratamiento farmacológico , Variantes Farmacogenómicas , Polimorfismo de Nucleótido Simple
12.
Am J Hum Genet ; 105(4): 773-787, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31564431

RESUMEN

Genome-wide association studies (GWASs) have identified thousands of genetic loci associated with cardiometabolic traits including type 2 diabetes (T2D), lipid levels, body fat distribution, and adiposity, although most causal genes remain unknown. We used subcutaneous adipose tissue RNA-seq data from 434 Finnish men from the METSIM study to identify 9,687 primary and 2,785 secondary cis-expression quantitative trait loci (eQTL; <1 Mb from TSS, FDR < 1%). Compared to primary eQTL signals, secondary eQTL signals were located further from transcription start sites, had smaller effect sizes, and were less enriched in adipose tissue regulatory elements compared to primary signals. Among 2,843 cardiometabolic GWAS signals, 262 colocalized by LD and conditional analysis with 318 transcripts as primary and conditionally distinct secondary cis-eQTLs, including some across ancestries. Of cardiometabolic traits examined for adipose tissue eQTL colocalizations, waist-hip ratio (WHR) and circulating lipid traits had the highest percentage of colocalized eQTLs (15% and 14%, respectively). Among alleles associated with increased cardiometabolic GWAS risk, approximately half (53%) were associated with decreased gene expression level. Mediation analyses of colocalized genes and cardiometabolic traits within the 434 individuals provided further evidence that gene expression influences variant-trait associations. These results identify hundreds of candidate genes that may act in adipose tissue to influence cardiometabolic traits.


Asunto(s)
Tejido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/genética , Expresión Génica , Obesidad/genética , Alelos , Índice de Masa Corporal , Finlandia , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Sitios de Carácter Cuantitativo , Relación Cintura-Cadera
13.
Int J Obes (Lond) ; 46(8): 1478-1486, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35589964

RESUMEN

BACKGROUND: COVID-19 severity varies widely. Although some demographic and cardio-metabolic factors, including age and obesity, are associated with increasing risk of severe illness, the underlying mechanism(s) are uncertain. SUBJECTS/METHODS: In a meta-analysis of three independent studies of 1471 participants in total, we investigated phenotypic and genetic factors associated with subcutaneous adipose tissue expression of Angiotensin I Converting Enzyme 2 (ACE2), measured by RNA-Seq, which acts as a receptor for SARS-CoV-2 cellular entry. RESULTS: Lower adipose tissue ACE2 expression was associated with multiple adverse cardio-metabolic health indices, including type 2 diabetes (T2D) (P = 9.14 × 10-6), obesity status (P = 4.81 × 10-5), higher serum fasting insulin (P = 5.32 × 10-4), BMI (P = 3.94 × 10-4), and lower serum HDL levels (P = 1.92 × 10-7). ACE2 expression was also associated with estimated proportions of cell types in adipose tissue: lower expression was associated with a lower proportion of microvascular endothelial cells (P = 4.25 × 10-4) and higher proportion of macrophages (P = 2.74 × 10-5). Despite an estimated heritability of 32%, we did not identify any proximal or distal expression quantitative trait loci (eQTLs) associated with adipose tissue ACE2 expression. CONCLUSIONS: Our results demonstrate that individuals with cardio-metabolic features known to increase risk of severe COVID-19 have lower background ACE2 levels in this highly relevant tissue. Reduced adipose tissue ACE2 expression may contribute to the pathophysiology of cardio-metabolic diseases, as well as the associated increased risk of severe COVID-19.


Asunto(s)
Tejido Adiposo , Enzima Convertidora de Angiotensina 2 , COVID-19 , Tejido Adiposo/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/complicaciones , COVID-19/genética , Factores de Riesgo Cardiometabólico , Diabetes Mellitus Tipo 2/genética , Células Endoteliales/metabolismo , Humanos , Obesidad , SARS-CoV-2
14.
J Med Genet ; 58(7): 442-452, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32709676

RESUMEN

BACKGROUND: Otitis media (OM) susceptibility has significant heritability; however, the role of rare variants in OM is mostly unknown. Our goal is to identify novel rare variants that confer OM susceptibility. METHODS: We performed exome and Sanger sequencing of >1000 DNA samples from 551 multiethnic families with OM and unrelated individuals, RNA-sequencing and microbiome sequencing and analyses of swabs from the outer ear, middle ear, nasopharynx and oral cavity. We also examined protein localisation and gene expression in infected and healthy middle ear tissues. RESULTS: A large, intermarried pedigree that includes 81 OM-affected and 53 unaffected individuals cosegregates two known rare A2ML1 variants, a common FUT2 variant and a rare, novel pathogenic variant c.1682A>G (p.Glu561Gly) within SPINK5 (LOD=4.09). Carriage of the SPINK5 missense variant resulted in increased relative abundance of Microbacteriaceae in the middle ear, along with occurrence of Microbacteriaceae in the outer ear and oral cavity but not the nasopharynx. Eight additional novel SPINK5 variants were identified in 12 families and individuals with OM. A role for SPINK5 in OM susceptibility is further supported by lower RNA counts in variant carriers, strong SPINK5 localisation in outer ear skin, faint localisation to middle ear mucosa and eardrum and increased SPINK5 expression in human cholesteatoma. CONCLUSION: SPINK5 variants confer susceptibility to non-syndromic OM. These variants potentially contribute to middle ear pathology through breakdown of mucosal and epithelial barriers, immunodeficiency such as poor vaccination response, alteration of head and neck microbiota and facilitation of entry of opportunistic pathogens into the middle ear.


Asunto(s)
Microbiota , Otitis Media/genética , Otitis Media/microbiología , Inhibidor de Serinpeptidasas Tipo Kazal-5/genética , Adulto , Animales , Bacterias/clasificación , Bacterias/genética , Niño , Susceptibilidad a Enfermedades/microbiología , Oído Externo/microbiología , Oído Medio/microbiología , Exoma , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Ratones , Boca/microbiología , Nasofaringe/microbiología , Linaje , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN
15.
Genet Epidemiol ; 44(6): 601-610, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32511796

RESUMEN

In observational genomics data sets, there is often confounding of the effect of an exposure on gene expression. To adjust for confounding when estimating the exposure effect, a common approach involves including potential confounders as covariates with the exposure in a regression model of gene expression. However, when the exposure and confounders interact to influence gene expression, the fitted regression model does not necessarily estimate the overall effect of the exposure. Using inverse probability weighting (IPW) or the parametric g-formula in these instances is straightforward to apply and yields consistent effect estimates. IPW can readily be integrated into a genomics data analysis pipeline with upstream data processing and normalization, while the g-formula can be implemented by making simple alterations to the regression model. The regression, IPW, and g-formula approaches to exposure effect estimation are compared herein using simulations; advantages and disadvantages of each approach are explored. The methods are applied to a case study estimating the effect of current smoking on gene expression in adipose tissue.


Asunto(s)
Regulación de la Expresión Génica , Estudios de Cohortes , Simulación por Computador , Intervalos de Confianza , Factores de Confusión Epidemiológicos , Humanos , Modelos Genéticos , Probabilidad , Análisis de Regresión , Fumar/efectos adversos , Fumar/genética
16.
Hum Mol Genet ; 28(6): 888-895, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30445632

RESUMEN

Total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) are heritable risk factors for cardiovascular disease, yet the molecular mechanisms underlying the majority of blood lipid-associated genome-wide association studies signals remain elusive. One association signal is located in intron 3 of VLDLR; rs3780181-A is a risk allele associated (P ≤ 2 × 10-9) with increased TC and LDL-C. We investigated variants, genes and mechanisms underlying this association signal. We used a functional genetic approach to show that the intronic region spanning rs3780181 exhibited 1.6-7.6-fold enhancer activity in human HepG2 hepatocyte, THP-1 monocyte and Simpson-Golabi-Behmel Syndrome (SGBS) preadipocyte cells and that the rs3780181-A risk allele showed significantly less enhancer activity compared with the G allele, consistent with the direction of an expression quantitative trait locus in liver. In addition, rs3780181 alleles showed differential binding to multiple nuclear proteins, including stronger IRF2 binding to the rs3780181 G allele. We used a CRISPR-cas9 approach to delete 475 and 663 bp of the putative enhancer element in HEK293T kidney cells; compared to expression of mock-edited cell lines, the homozygous enhancer deletion cell lines showed 1.2-fold significantly (P < 0.04) decreased expression of VLDLR, as well as 1.5-fold decreased expression of SMARCA2, located 388 kb away. Together, these results identify an enhancer of VLDLR expression and suggest that altered binding of one or more factors bound to rs3780181 alleles decreases enhancer activity and reduces at least VLDLR expression, leading to increased TC and LDL-C.


Asunto(s)
Alelos , Elementos de Facilitación Genéticos , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Receptores de LDL/genética , Eliminación de Secuencia , Biología Computacional/métodos , Secuencia Conservada , Predisposición Genética a la Enfermedad , Variación Genética , Humanos , Factor 2 Regulador del Interferón/metabolismo , Anotación de Secuencia Molecular , Motivos de Nucleótidos , Polimorfismo de Nucleótido Simple , Unión Proteica
17.
Hum Mol Genet ; 28(24): 4161-4172, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31691812

RESUMEN

Integration of genome-wide association study (GWAS) signals with expression quantitative trait loci (eQTL) studies enables identification of candidate genes. However, evaluating whether nearby signals may share causal variants, termed colocalization, is affected by the presence of allelic heterogeneity, different variants at the same locus impacting the same phenotype. We previously identified eQTL in subcutaneous adipose tissue from 770 participants in the Metabolic Syndrome in Men (METSIM) study and detected 15 eQTL signals that colocalized with GWAS signals for waist-hip ratio adjusted for body mass index (WHRadjBMI) from the Genetic Investigation of Anthropometric Traits consortium. Here, we reevaluated evidence of colocalization using two approaches, conditional analysis and the Bayesian test COLOC, and show that providing COLOC with approximate conditional summary statistics at multi-signal GWAS loci can reconcile disagreements in colocalization classification between the two tests. Next, we performed conditional analysis on the METSIM subcutaneous adipose tissue data to identify conditionally distinct or secondary eQTL signals. We used the two approaches to test for colocalization with WHRadjBMI GWAS signals and evaluated the differences in colocalization classification between the two tests. Through these analyses, we identified four GWAS signals colocalized with secondary eQTL signals for FAM13A, SSR3, GRB14 and FMO1. Thus, at loci with multiple eQTL and/or GWAS signals, analyzing each signal independently enabled additional candidate genes to be identified.


Asunto(s)
Tejido Adiposo/fisiología , Distribución de la Grasa Corporal , Estudio de Asociación del Genoma Completo/métodos , Síndrome Metabólico/genética , Sitios de Carácter Cuantitativo , Adulto , Teorema de Bayes , Índice de Masa Corporal , Femenino , Predisposición Genética a la Enfermedad , Humanos , Desequilibrio de Ligamiento , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple , Grasa Subcutánea/metabolismo , Relación Cintura-Cadera/métodos
18.
Am J Hum Genet ; 103(5): 637-653, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30388398

RESUMEN

Genome-wide association studies (GWASs) have identified thousands of loci associated with hundreds of complex diseases and traits, and progress is being made toward elucidating the causal variants and genes underlying these associations. Functional characterization of mechanisms at GWAS loci is a multi-faceted challenge. Challenges include linkage disequilibrium and allelic heterogeneity at each locus, the noncoding nature of most loci, and the time and cost needed for experimentally evaluating the potential mechanistic contributions of genes and variants. As GWAS sample sizes increase, more loci are identified, and the complexities of individual loci emerge. Loci can consist of multiple association signals, each of which can reflect the influence of multiple variants, inseparable by association analyses. Each signal within a locus can influence the same or different target genes. Experimental studies of genes and variants can differ on the basis of cell type, cellular environment, or other context-specific variables. In this review, we describe the complexity of mechanisms at GWAS loci-including multiple signals, multiple variants, and/or multiple genes-and the implications these complexities hold for experimental study design and interpretation of GWAS mechanisms.


Asunto(s)
Sitios de Carácter Cuantitativo/genética , Animales , Variación Genética/genética , Estudio de Asociación del Genoma Completo/métodos , Humanos , Desequilibrio de Ligamiento/genética
19.
Am J Hum Genet ; 103(4): 535-552, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30290150

RESUMEN

Although recent studies provide evidence for a common genetic basis between complex traits and Mendelian disorders, a thorough quantification of their overlap in a phenotype-specific manner remains elusive. Here, we have quantified the overlap of genes identified through large-scale genome-wide association studies (GWASs) for 62 complex traits and diseases with genes containing mutations known to cause 20 broad categories of Mendelian disorders. We identified a significant enrichment of genes linked to phenotypically matched Mendelian disorders in GWAS gene sets; of the total 1,240 comparisons, a higher proportion of phenotypically matched or related pairs (n = 50 of 92 [54%]) than phenotypically unmatched pairs (n = 27 of 1,148 [2%]) demonstrated significant overlap, confirming a phenotype-specific enrichment pattern. Further, we observed elevated GWAS effect sizes near genes linked to phenotypically matched Mendelian disorders. Finally, we report examples of GWAS variants localized at the transcription start site or physically interacting with the promoters of genes linked to phenotypically matched Mendelian disorders. Our results are consistent with the hypothesis that genes that are disrupted in Mendelian disorders are dysregulated by non-coding variants in complex traits and demonstrate how leveraging findings from related Mendelian disorders and functional genomic datasets can prioritize genes that are putatively dysregulated by local and distal non-coding GWAS variants.


Asunto(s)
Herencia Multifactorial/genética , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Femenino , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Humanos , Masculino , Fenotipo , Regiones Promotoras Genéticas/genética , Sitio de Iniciación de la Transcripción/fisiología
20.
Am J Hum Genet ; 102(4): 620-635, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29625024

RESUMEN

Genome-wide association studies (GWASs) and functional genomics approaches implicate enhancer disruption in islet dysfunction and type 2 diabetes (T2D) risk. We applied genetic fine-mapping and functional (epi)genomic approaches to a T2D- and proinsulin-associated 15q22.2 locus to identify a most likely causal variant, determine its direction of effect, and elucidate plausible target genes. Fine-mapping and conditional analyses of proinsulin levels of 8,635 non-diabetic individuals from the METSIM study support a single association signal represented by a cluster of 16 strongly associated (p < 10-17) variants in high linkage disequilibrium (r2 > 0.8) with the GWAS index SNP rs7172432. These variants reside in an evolutionarily and functionally conserved islet and ß cell stretch or super enhancer; the most strongly associated variant (rs7163757, p = 3 × 10-19) overlaps a conserved islet open chromatin site. DNA sequence containing the rs7163757 risk allele displayed 2-fold higher enhancer activity than the non-risk allele in reporter assays (p < 0.01) and was differentially bound by ß cell nuclear extract proteins. Transcription factor NFAT specifically potentiated risk-allele enhancer activity and altered patterns of nuclear protein binding to the risk allele in vitro, suggesting that it could be a factor mediating risk-allele effects. Finally, the rs7163757 proinsulin-raising and T2D risk allele (C) was associated with increased expression of C2CD4B, and possibly C2CD4A, both of which were induced by inflammatory cytokines, in human islets. Together, these data suggest that rs7163757 contributes to genetic risk of islet dysfunction and T2D by increasing NFAT-mediated islet enhancer activity and modulating C2CD4B, and possibly C2CD4A, expression in (patho)physiologic states.


Asunto(s)
Proteínas de Unión al Calcio/genética , Secuencia Conservada , Elementos de Facilitación Genéticos/genética , Evolución Molecular , Islotes Pancreáticos/patología , Mutación/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Anciano , Alelos , Animales , Secuencia de Bases , Proteínas de Unión al Calcio/metabolismo , Línea Celular , Cromatina/metabolismo , Cromosomas Humanos Par 15/genética , Citocinas/metabolismo , ADN Intergénico/genética , Humanos , Mediadores de Inflamación/metabolismo , Ratones , Persona de Mediana Edad , Factores de Transcripción NFATC/metabolismo , Mapeo Físico de Cromosoma , Polimorfismo de Nucleótido Simple/genética , Proinsulina/metabolismo , Ratas , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA