Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Cardiovasc Magn Reson ; 18(1): 49, 2016 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-27549809

RESUMEN

BACKGROUND: Patients with repaired tetralogy of Fallot (rTOF) suffer from progressive ventricular dysfunction decades after their surgical repair. We hypothesized that measures of ventricular strain and dyssynchrony would predict deterioration of ventricular function in patients with rTOF. METHODS: A database search identified all patients at a single institution with rTOF who underwent cardiovascular magnetic resonance (CMR) at least twice, >6 months apart, without intervening surgical or catheter procedures. Seven primary predictors were derived from the first CMR using a custom feature tracking algorithm: left (LV), right (RV) and inter-ventricular dyssynchrony, LV and RV peak global circumferential strains, and LV and RV peak global longitudinal strains. Three outcomes were defined, whose changes were assessed over time: RV end-diastolic volume, and RV and LV ejection fraction. Multivariate linear mixed models were fit to investigate relationships of outcomes to predictors and ten potential baseline confounders. RESULTS: One hundred fifty-three patients with rTOF (23 ± 14 years, 50 % male) were included. The mean follow-up duration between the first and last CMR was 2.9 ± 1.3 years. After adjustment for confounders, none of the 7 primary predictors were significantly associated with change over time in the 3 outcome variables. Only 1-17 % of the variability in the change over time in the outcome variables was explained by the baseline predictors and potential confounders. CONCLUSIONS: In patients with repaired tetralogy of Fallot, ventricular dyssynchrony and global strain derived from cine CMR were not significantly related to changes in ventricular size and function over time. The ability to predict deterioration in ventricular function in patients with rTOF using current methods is limited.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos/efectos adversos , Imagen por Resonancia Cinemagnética , Tetralogía de Fallot/cirugía , Disfunción Ventricular Izquierda/diagnóstico por imagen , Disfunción Ventricular Derecha/diagnóstico por imagen , Función Ventricular Izquierda , Función Ventricular Derecha , Adolescente , Algoritmos , Fenómenos Biomecánicos , Niño , Bases de Datos Factuales , Progresión de la Enfermedad , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Kentucky , Modelos Lineales , Masculino , Análisis Multivariante , Valor Predictivo de las Pruebas , Estudios Retrospectivos , Medición de Riesgo , Factores de Riesgo , Estrés Mecánico , Volumen Sistólico , Tetralogía de Fallot/complicaciones , Tetralogía de Fallot/diagnóstico por imagen , Tetralogía de Fallot/fisiopatología , Factores de Tiempo , Resultado del Tratamiento , Disfunción Ventricular Izquierda/etiología , Disfunción Ventricular Izquierda/fisiopatología , Disfunción Ventricular Derecha/etiología , Disfunción Ventricular Derecha/fisiopatología , Adulto Joven
2.
IEEE Trans Med Imaging ; 36(5): 1076-1085, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28055859

RESUMEN

Mechanics of the left ventricle (LV) are important indicators of cardiac function. The role of right ventricular (RV) mechanics is largely unknown due to the technical limitations of imaging its thin wall and complex geometry and motion. By combining 3D Displacement Encoding with Stimulated Echoes (DENSE) with a post-processing pipeline that includes a local coordinate system, it is possible to quantify RV strain, torsion, and synchrony. In this study, we sought to characterize RV mechanics in 50 healthy individuals and compare these values to their LV counterparts. For each cardiac frame, 3D displacements were fit to continuous and differentiable radial basis functions, allowing for the computation of the 3D Cartesian Lagrangian strain tensor at any myocardial point. The geometry of the RV was extracted via a surface fit to manually delineated endocardial contours. Throughout the RV, a local coordinate system was used to transform from a Cartesian strain tensor to a polar strain tensor. It was then possible to compute peak RV torsion as well as peak longitudinal and circumferential strain. A comparable analysis was performed for the LV. Dyssynchrony was computed from the standard deviation of regional activation times. Global circumferential strain was comparable between the RV and LV (-18.0% for both) while longitudinal strain was greater in the RV (-18.1% vs. -15.7%). RV torsion was comparable to LV torsion (6.2 vs. 7.1 degrees, respectively). Regional activation times indicated that the RV contracted later but more synchronously than the LV. 3D spiral cine DENSE combined with a post-processing pipeline that includes a local coordinate system can resolve both the complex geometry and 3D motion of the RV.


Asunto(s)
Ventrículos Cardíacos , Voluntarios Sanos , Corazón , Humanos , Imagen por Resonancia Cinemagnética
3.
Biomech Model Mechanobiol ; 14(3): 633-47, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25315521

RESUMEN

Myocardial infarction (MI) triggers a series of maladaptive events that lead to structural and functional changes in the left ventricle. It is crucial to better understand the progression of adverse remodeling, in order to develop effective treatment. In addition, being able to assess changes in vivo would be a powerful tool in the clinic. The goal of the current study is to quantify the in vivo material properties of infarcted and remote myocardium 1 week after MI, as well as the orientation of collagen fibers in the infarct. This will be accomplished by using a combination of magnetic resonance imaging (MRI), catheterization, finite element modeling, and numerical optimization to analyze a porcine model ([Formula: see text]) of posterolateral myocardial infarction. Specifically, properties will be determined by minimizing the difference between in vivo strains and volume calculated from MRI and finite element model predicted strains and volume. The results indicate that the infarct region is stiffer than the remote region and that the infarct collagen fibers become more circumferentially oriented 1 week post-MI. These findings are consistent with previous studies, which employed ex vivo techniques. The proposed methodology will ultimately provide a means of predicting remote and infarct mechanical properties in vivo at any time point post-MI.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Infarto del Miocardio/fisiopatología , Animales , Modelos Animales de Enfermedad , Análisis de Elementos Finitos , Masculino , Porcinos
4.
Ann Thorac Surg ; 100(2): 582-9, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26095107

RESUMEN

BACKGROUND: Infarct expansion initiates and sustains adverse left ventricular (LV) remodeling after myocardial infarction (MI) and is influenced by temporal changes in infarct material properties. Data from ex vivo biaxial extension testing support this hypothesis; however, infarct material properties have never been measured in vivo. The goal of the current study was to serially quantify the in vivo material properties and fiber orientation of infarcted myocardium over a 12-week period in a porcine model of MI. METHODS: A combination of magnetic resonance imaging (MRI), catheterization, finite element modeling, and numeric optimization was used to analyze posterolateral MI. Specifically, properties were determined by minimizing the difference between in vivo strains and volume calculated from MRI and strains and volume predicted by finite element modeling. RESULTS: In 1 week after MI, the infarct region was found to be approximately 20 times stiffer than normal diastolic myocardium. Over the course of 12 weeks, the infarct region became progressively less stiff as the LV dilated and ejection fraction decreased. The infarct thinned by nearly half during the remodeling period, and infarct fiber angles became more circumferentially oriented. CONCLUSIONS: The results reported here are consistent with previously described ex vivo biaxial extension studies of infarct material properties and the circumferential change of collagen orientation in posterolateral infarcts. The current study represents a significant advance in that the method used allows for the serial assessment of an individual infarct in vivo over time and avoids the inherent limitations related to the testing of excised tissues.


Asunto(s)
Análisis de Elementos Finitos , Imagen por Resonancia Magnética , Infarto del Miocardio/patología , Animales , Modelos Animales de Enfermedad , Masculino , Porcinos , Factores de Tiempo
5.
Ann Thorac Surg ; 95(6): 2022-7, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23643546

RESUMEN

BACKGROUND: The Acorn CorCap Cardiac Support Device (CSD; Acorn Cardiovascular Inc, St. Paul, MN) is a woven polyester jacket that is placed around the heart and designed to reverse the progressive remodeling associated with dilated cardiomyopathy. However, the effects of the Acorn CSD on myofiber stress and ventricular function remain unknown. We tested the hypothesis that the Acorn CSD reduces end-diastolic (ED) myofiber stress. METHODS: A previously described weakly coupled biventricular finite element (FE) model and circulatory model based on magnetic resonance images of a dog with dilated cardiomyopathy was used. Virtual applications of the CSD alone (Acorn), CSD with rotated fabric fiber orientation (rotated), CSD with 5% prestretch (tight), and CSD wrapped only around the left ventricle (LV; LV-only) were performed, and the effect on myofiber stress at ED and pump function was calculated. RESULTS: The Acorn CSD has a large effect on ED myofiber stress in the LV free wall, with reductions of 55%, 79%, 92%, and 40% in the Acorn, rotated, tight, and LV-only cases, respectively. However, there is a tradeoff in which the Acorn CSD reduces stroke volume at LV end-diastolic pressure of 8 mm Hg by 23%, 25%, 30%, and 7%, respectively, in the Acorn, rotated, tight, and LV-only cases. CONCLUSIONS: The Acorn CSD significantly reduces ED myofiber stress. However, CSD wrapped only around the LV was the only case with minimal negative effect on pump function. Findings suggest that LV-only CSD and Acorn fabric orientation should be optimized to allow maximal myofiber stress reduction with minimal reduction in pump function.


Asunto(s)
Cardiomiopatía Dilatada/cirugía , Análisis de Elementos Finitos , Corazón Auxiliar , Remodelación Ventricular/fisiología , Animales , Modelos Animales de Enfermedad , Perros , Diseño de Equipo , Seguridad de Equipos , Pruebas de Función Cardíaca , Ensayo de Materiales , Distribución Aleatoria , Sensibilidad y Especificidad , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA