Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
BMC Bioinformatics ; 16: 103, 2015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25885222

RESUMEN

BACKGROUND: Epidermal growth factor receptor (EGFR) signalling plays a major role in biological processes, including cell proliferation, differentiation and survival. Since the over-expression of EGFR causes human cancers, EGFR is an attractive drug target. A tumor suppressor endogenous protein, MIG-6, is known to suppress EGFR over-expression by binding to the C-lobe of EGFR kinase. Thus, this C-lobe of the EGFR kinase is a potential new target for EGFR kinase activity inhibition. In this study, molecular dynamics (MD) simulations and binding free energy calculations were used to investigate the protein-peptide interactions between EGFR kinase and a 27-residue peptide derived from MIG-6_s1 segment (residues 336-362). RESULTS: These 27 residues of MIG-6_s1 were modeled from the published MIG-6 X-ray structure. The binding dynamics were detailed by applying the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method to predict the binding free energy. Both van der Waals interactions and non-polar solvation were favorable driving forces for binding process. Six residues of EGFR kinase and eight residues of MIG-6_s1 residues were shown to be responsible for interface binding in which we investigated per residue free energy decomposition and the results from the computational alanine scanning approach. These residues also had higher hydrogen bond occupancies than other residues at the binding interface. The results from the aforementioned calculations reasonably agreed with the previous experimental mutagenesis studies. CONCLUSIONS: Molecular dynamics simulations were used to investigate the interactions of MIG-6_s1 to EGFR kinase domain. Our study provides an insight into such interactions that is useful in guiding the design of novel anticancer therapeutics. The information on our modelled peptide interface with EGFR kinase could be a possible candidate for an EGFR dimerization inhibitor.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Receptores ErbB/química , Proteínas Supresoras de Tumor/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Biología Computacional/métodos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Mutagénesis , Péptidos/química , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Supresoras de Tumor/metabolismo
2.
BMC Bioinformatics ; 15: 261, 2014 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-25089037

RESUMEN

BACKGROUND: Human epidermal growth factor receptor 2 (HER2) has an important role in cancer aggressiveness and poor prognosis. HER2 has been used as a drug target for cancers. In particular, to effectively treat HER2-positive cancer, small molecule inhibitors were developed to target HER2 kinase. Knowing that curcumin has been used as food to inhibit cancer activity, this study evaluated the efficacy of natural curcumins and curcumin analogs as HER2 inhibitors using in vitro and in silico studies. The curcumin analogs considered in this study composed of 4 groups classified by their core structure, ß-diketone, monoketone, pyrazole, and isoxazole. RESULTS: In the present study, both computational and experimental studies were performed. The specificity of curcumin analogs selected from the docked results was examined against human breast cancer cell lines. The screened curcumin compounds were then subjected to molecular dynamics simulation study. By modifying curcumin analogs, we found that protein-ligand affinity increases. The benzene ring with a hydroxyl group could enhance affinity by forming hydrophobic interactions and the hydrogen bond with the hydrophobic pocket. Hydroxyl, carbonyl or methoxy group also formed hydrogen bonds with residues in the adenine pocket and sugar pocket of HER2-TK. These modifications could suggest the new drug design for potentially effective HER2-TK inhibitors. Two outstanding compounds, bisdemethylcurcumin (AS-KTC006) and 3,5-bis((E)-3,4-dimethoxystyryl)isoxazole (AS-KTC021 ),were well oriented in the binding pocket almost in the simulation time, 30 ns. This evidence confirmed the results of cell-based assays and the docking studies. They possessed more distinguished interactions than known HER2-TK inhibitors, considering them as a promising drug in the near future. CONCLUSIONS: The series of curcumin compounds were screened using a computational molecular docking and followed by human breast cancer cell lines assay. Both AS-KTC006 and AS-KTC021 could inhibit breast cancer cell lines though inhibiting of HER2-TK. The intermolecular interactions were confirmed by molecular dynamics simulation studies. This information would explore more understanding of curcuminoid structures and HER2-TK.


Asunto(s)
Curcumina/análogos & derivados , Curcumina/farmacología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Receptor ErbB-2/química , Receptor ErbB-2/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Diseño de Fármacos , Femenino , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Inhibidores de Proteínas Quinasas/análogos & derivados , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Estructura Terciaria de Proteína
3.
BMC Genomics ; 10 Suppl 3: S24, 2009 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-19958488

RESUMEN

BACKGROUND: It is known that the highly pathogenic avian influenza A virus H5N1 binds strongly and with high specificity to the avian-type receptor by its hemagglutinin surface protein. This specificity is normally a barrier to viral transmission from birds to humans. However, strains may emerge with mutated hemagglutinin, potentially changing the receptor binding preference from avian to human-type. This hypothesis has been proven correct, since viral isolates from Vietnam and Thailand have been found which have increased selectivity toward the human cell receptor. The change in binding preference is due to mutation, which can be computationally modelled. The aim of this study is to further explore whether computational simulation could be used as a prediction tool for host type selectivity in emerging variants. RESULTS: Molecular dynamics simulation was employed to study the interactions between receptor models and hemagglutinin proteins from H5N1 strains A/Duck/Singapore/3/97, mutated A/Duck/Singapore/3/97 (Q222L, G224S, Q222L/G224S), A/Thailand/1(KAN-1)/2004, and mutated A/Thailand/1(KAN-1)/2004 (L129V/A134V). The avian receptor was represented by Sia alpha(2,3)Gal substructure and human receptor by Sia alpha(2,6)Gal. The glycoside binding conformation was monitored throughout the simulations since high selectivity toward a particular host occurs when the sialoside bound with the near-optimized conformation. CONCLUSION: The simulation results showed all hemagglutinin proteins used the same set of amino acid residues to bind with the glycoside; however, some mutations alter linkage preferences. Preference toward human-type receptors is associated with a positive torsion angle, while avian-type receptor preference is associated with a negative torsion angle. According to the conformation analysis of the bound receptors, we could predict the relative selectivity in accordance with in vitro experimental data when disaccharides receptor analogs were used.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/análisis , Subtipo H5N1 del Virus de la Influenza A/química , Receptores Virales/química , Simulación por Computador , Cristalografía por Rayos X , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/metabolismo , Modelos Moleculares , Mutación , Unión Proteica , Estructura Terciaria de Proteína , Receptores Virales/análisis , Receptores Virales/metabolismo
4.
Chem Biol Drug Des ; 84(4): 450-61, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24716467

RESUMEN

Currently, the usefulness of antimalarials such as pyrimethamine (PYR) is drastically reduced due to the emergence of resistant Plasmodium falciparum (Pf) caused by its dihydrofolate reductase (PfDHFR) mutations, especially the quadruple N51I/C59R/S108N/I164L mutations. The resistance was due to the steric conflict of PYR with S108N. WR99210 (WR), a dihydrotriazine antifolate with a flexible side chain that can avoid such conflict, can overcome this resistance through tight binding with the mutant. To understand factors contributing to different binding affinities of PYR/WR to the wild type (WT) and quadruple mutant (QM), we performed simulations on WR-WT, WR-QM, PYR-WT, and PYR-QM complexes and found that Ile14 and Asp54 were crucial for PYR/WR binding to PfDHFR due to strong hydrogen bonds. The quadruple mutations cause PYR to form, on average, fewer hydrogen bonds with Ile14 and Leu164, and to be displaced from its optimal orientation for Asp54 interaction. The predicted binding affinity ranking (WR-QM ≈ WR-WT ≈ PYR-WT >> PYR-QM) reasonably agrees with the inhibition constant (K(i)) ranking. Our results reveal important residues for tight binding of PYR/WR to WT/QM, which may be used to evaluate the inhibition effectiveness of antimalarials and to provide fundamental information for designing new drugs effective against drug-resistant P. falciparum.


Asunto(s)
Antagonistas del Ácido Fólico/química , Plasmodium falciparum/efectos de los fármacos , Pirimetamina/farmacología , Tetrahidrofolato Deshidrogenasa/química , Sitios de Unión , Resistencia a Medicamentos , Antagonistas del Ácido Fólico/metabolismo , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Mutación , NADP/química , NADP/metabolismo , Plasmodium falciparum/enzimología , Estructura Terciaria de Proteína , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo , Termodinámica
5.
J Mol Model ; 19(2): 521-8, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22955423

RESUMEN

Serine protease inhibitor Kazal type 1 (SPINK1) plays an important role in protecting the pancreas against premature trypsinogen activation that causes pancreatitis. Various mutations in the SPINK1 gene were shown to be associated with patients with pancreatitis. Recent transfection studies identified intracellular folding defects, probably caused by mutation induced misfolding of D50E and Y54H mutations, as a common mechanism that reduces SPINK1 secretion and as a possible novel mechanism of SPINK1 deficiency associated with chronic pancreatitis. Using molecular dynamics, we investigated the effects of D50E and Y54H mutations on SPINK1 dynamics and conformation at 300 K. We found that the structures of D50E and Y54H mutants were less stable than and were distorted from those of the wild type, as indicated by the RMSD plots, RMSF plots and DSSP series. Specifically, unwinding of the top of helices (the main secondary structures) and the distortion of the loops above the helices were observed. It may be possible that this distorted protein structure may be recognized as "non-native" by members of the chaperone family; it may be further retained and targeted for degradation, leading to SPINK1 secretion reduction and subsequently pancreatitis in patients as Király et al. (Gut 56:1433, 2007) proposed.


Asunto(s)
Proteínas Portadoras/química , Simulación de Dinámica Molecular , Mutación , Proteínas Portadoras/genética , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Pancreatitis Crónica/metabolismo , Pliegue de Proteína , Estabilidad Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Electricidad Estática , Relación Estructura-Actividad , Inhibidor de Tripsina Pancreática de Kazal
6.
Bioinformation ; 4(2): 59-62, 2009 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-20198169

RESUMEN

Human thiopurine S-methyltransferase (TPMT) is an essential protein in 6-mercaptopurine (6MP) drug metabolism. To understand the pharmacogenetics of TPMT and 6MP, X-ray co-crystal structures of TPMT complexes with S-adenosyl-L-methionine (AdoMet) and 6MP are required. However, the co-crystal structure of this complex has not been reported because 6MP is poorly water soluble. We used molecular dynamics (MD) simulation to predict the structure of the complex of human TPMT-AdoHcy(CH(2))6MP, where the sulfur atoms of AdoHcy and 6MP were linked by a CH(2) group. After 1300 picoseconds of MD simulation, the trajectory showed that 6MP was stabilized in the TPMT active site by formation of non-bonded interactions between 6MP and Phe40, Pro196 and Arg226 side chains of TPMT. The intersulfur distance between AdoHcy and 6MP as well as the binding modes and the interactions of our TPMT-AdoHcy model are consistent with those observed in the X-ray crystal structure of murine TPMT-AdoHcy-6MP complex. The predicted binding modes of AdoHcy and 6MP in our model are consistent with those observed in murine TPMT X-ray crystal structures, which provides structural insights into the interactions of TPMT, AdoHcy, and 6MP at the atomic level and may be used as a starting point for further study of thiopurine drug pharmacogenetics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA