Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Cell ; 74(4): 651-663.e8, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-30954402

RESUMEN

Accumulating evidence supports the role of the DNA damage response (DDR) in the negative regulation of tumorigenesis. Here, we found that DDR signaling poises a series of epigenetic events, resulting in activation of pro-tumorigenic genes but can go as far as reactivation of the pluripotency gene OCT4. Loss of DNA methylation appears to be a key initiating event in DDR-dependent OCT4 locus reactivation although full reactivation required the presence of a driving oncogene, such as Myc and macroH2A downregulation. Using genetic-lineage-tracing experiments and an in situ labeling approach, we show that DDR-induced epigenetic reactivation of OCT4 regulates the resistance to chemotherapy and contributes to tumor relapse both in mouse and primary human cancers. In turn, deletion of OCT4 reverses chemoresistance and delays the relapse. Here, we uncovered an unexpected tumor-promoting role of DDR in cancer cell reprogramming, providing novel therapeutic entry points for cancer intervention strategies.


Asunto(s)
Carcinogénesis/genética , Metilación de ADN/genética , Neoplasias/genética , Factor 3 de Transcripción de Unión a Octámeros/genética , Animales , Reprogramación Celular/genética , Daño del ADN/genética , Epigénesis Genética/genética , Regulación Neoplásica de la Expresión Génica , Histonas/genética , Humanos , Ratones , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Neoplasias/patología , Proteínas Proto-Oncogénicas c-myc/genética , Recurrencia , Transducción de Señal/genética
2.
Nat Cell Biol ; 25(9): 1265-1278, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37652981

RESUMEN

Despite advances in four-factor (4F)-induced reprogramming (4FR) in vitro and in vivo, how 4FR interconnects with senescence remains largely under investigated. Here, using genetic and chemical approaches to manipulate senescent cells, we show that removal of p16High cells resulted in the 4FR of somatic cells into totipotent-like stem cells. These cells expressed markers of both pluripotency and the two-cell embryonic state, readily formed implantation-competent blastoids and, following morula aggregation, contributed to embryonic and extraembryonic lineages. We identified senescence-dependent regulation of nicotinamide N-methyltransferase as a key mechanism controlling the S-adenosyl-L-methionine levels during 4FR that was required for expression of the two-cell genes and acquisition of an extraembryonic potential. Importantly, a partial 4F epigenetic reprogramming in old mice was able to reverse several markers of liver aging only in conjunction with the depletion of p16High cells. Our results show that the presence of p16High senescent cells limits cell plasticity, whereas their depletion can promote a totipotent-like state and histopathological tissue rejuvenation during 4F reprogramming.


Asunto(s)
Plasticidad de la Célula , Reprogramación Celular , Animales , Ratones , Reprogramación Celular/genética , Envejecimiento/genética , Implantación del Embrión , Epigenómica
3.
Cells ; 11(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36497191

RESUMEN

Medulloblastoma (MB) is the most common and aggressive paediatric brain tumour. Although the cure rate can be as high as 70%, current treatments (surgery, radio- and chemotherapy) excessively affect the patients' quality of life. Relapses cannot be controlled by conventional or targeted treatments and are usually fatal. The strong heterogeneity of the disease (four subgroups and several subtypes) is related to innate or acquired resistance to reference treatments. Therefore, more efficient and less-toxic therapies are needed. Here, we demonstrated the efficacy of a novel inhibitor (C29) of CXCR1/2 receptors for ELR+CXCL cytokines for the treatment of childhood MB. The correlation between ELR+CXCL/CXCR1/2 expression and patient survival was determined using the R2: Genomics Analysis and Visualization platform. In vitro efficacy of C29 was evaluated by its ability to inhibit proliferation, migration, invasion, and pseudo-vessel formation of MB cell lines sensitive or resistant to radiotherapy. The growth of experimental MB obtained by MB spheroids on organotypic mouse cerebellar slices was also assayed. ELR+CXCL/CXCR1/2 levels correlated with shorter survival. C29 inhibited proliferation, clone formation, CXCL8/CXCR1/2-dependent migration, invasion, and pseudo-vessel formation by sensitive and radioresistant MB cells. C29 reduced experimental growth of MB in the ex vivo organotypic mouse model and crossed the blood-brain barrier. Targeting CXCR1/2 represents a promising therapeutic strategy for the treatment of paediatric MB in first-line treatment or after relapse following conventional therapy.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Animales , Ratones , Neoplasias Cerebelosas/tratamiento farmacológico , Meduloblastoma/tratamiento farmacológico , Recurrencia Local de Neoplasia , Calidad de Vida , Receptores de Interleucina-8A/metabolismo , Humanos , Niño
4.
Cell Metab ; 32(1): 87-99.e6, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32485135

RESUMEN

The accumulation of senescent cells can drive many age-associated phenotypes and pathologies. Consequently, it has been proposed that removing senescent cells might extend lifespan. Here, we generated two knockin mouse models targeting the best-characterized marker of senescence, p16Ink4a. Using a genetic lineage tracing approach, we found that age-induced p16High senescence is a slow process that manifests around 10-12 months of age. The majority of p16High cells were vascular endothelial cells mostly in liver sinusoids (LSECs), and to lesser extent macrophages and adipocytes. In turn, continuous or acute elimination of p16High senescent cells disrupted blood-tissue barriers with subsequent liver and perivascular tissue fibrosis and health deterioration. Our data show that senescent LSECs are not replaced after removal and have important structural and functional roles in the aging organism. In turn, delaying senescence or replacement of senescent LSECs could represent a powerful tool in slowing down aging.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Envejecimiento/metabolismo , Animales , Células Cultivadas , Senescencia Celular/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Células Endoteliales/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
5.
J Theor Biol ; 250(2): 322-38, 2008 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-17997418

RESUMEN

We propose a new mathematical model of erythropoiesis that takes a positive feedback of erythrocytes on progenitor apoptosis into account, and incorporates a negative feedback of erythrocytes on progenitor self-renewal. The resulting model is a system of age-structured equations that reduces to a system of delay differential equations where the delays account for progenitor compartment duration and cell cycle length. We compare this model with experimental data on an induced-anemia in mice that exhibit damped oscillations of the hematocrit before it returns to equilibrium. When we assume no self-renewal of progenitors, we obtain an inaccurate fitting of the model with experimental data. Adding self-renewal in the progenitor compartment gives better approximations, with the main features of experimental data correctly fitted. Our results indicate the importance of progenitor self-renewal in the modelling of erythropoiesis. Moreover, the model makes testable predictions on the lifespan of erythrocytes confronted to a severe anemia, and on the progenitors behavior.


Asunto(s)
Células Precursoras Eritroides/citología , Eritropoyesis/fisiología , Modelos Biológicos , Anemia/sangre , Animales , Apoptosis/fisiología , Diferenciación Celular/fisiología , División Celular/fisiología , Senescencia Celular/fisiología , Retroalimentación Fisiológica/fisiología , Femenino , Hematócrito , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA