Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; 19(1): e2204736, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36367966

RESUMEN

Programmable coacervates based on zwitterionic polymers are designed as dynamic materials for ion exchange bioseparation. These coacervates are proposed as promising materials for the purification of soft nanoparticles such as liposomes and extracellular vesicles (EVs). It is shown that the stimulus-responsiveness of the coacervates and the recruitment of desired molecules can be independently programmed by polymer design. Moreover, the polymeric coacervates can recruit and release intact liposomes, human EVs, and nanoalgosomes in high yields and separate vesicles from different types of impurities, including proteins and nucleic acids. This approach combines the speed and simplicity of precipitation methods and the programmability of chromatography with the gentleness of aqueous two-phase separation, thereby guaranteeing product stability. This material represents a promising alternative for providing a low-shear, gentle, and selective purification method for EVs.


Asunto(s)
Vesículas Extracelulares , Ácidos Nucleicos , Humanos , Liposomas , Vesículas Extracelulares/química , Proteínas , Ácidos Nucleicos/análisis
2.
Nanoscale Adv ; 5(24): 6870-6879, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38059037

RESUMEN

Hydrogels are 3D cross-linked networks of polymeric chains designed to be used in the human body. Nowadays they find widespread applications in the biomedical field and are particularly attractive as drug delivery vectors. However, despite many good results, their release performance is sometimes very quick and uncontrolled, being forced by the high in vivo clearance of body fluids. In this direction, the development of novel responsive nanomaterials promises to overcome the drawbacks of common hydrogels, inducing responsive properties in three-dimensional polymeric devices. In this study, we synthesized and then loaded gold nanorods (Au NRs) within an agarose-carbomer (AC)-based hydrogel obtained from a microwave-assisted polycondensation reaction between carbomer 974P and agarose. The photothermal effect of the composite device was quantified in terms of maximum temperature and spatial-temporal temperature distribution, also during consecutive laser irradiations. This work shows that composite Au NRs loaded within AC hydrogels can serve as a stable photothermal treatment agent with enhanced photothermal efficiency and good thermal stability after consecutive laser irradiations. These results confirm that the composite system produced can exhibit an enhanced thermal effect under NIR laser irradiation, which is expected to lead to great therapeutic advantages for the localized treatment of different diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA