RESUMEN
Personalised cardiac models are a virtual representation of the patient heart, with parameter values for which the simulation fits the available clinical measurements. Models usually have a large number of parameters while the available data for a given patient are typically limited to a small set of measurements; thus, the parameters cannot be estimated uniquely. This is a practical obstacle for clinical applications, where accurate parameter values can be important. Here, we explore an original approach based on an algorithm called Iteratively Updated Priors (IUP), in which we perform successive personalisations of a full database through maximum a posteriori (MAP) estimation, where the prior probability at an iteration is set from the distribution of personalised parameters in the database at the previous iteration. At the convergence of the algorithm, estimated parameters of the population lie on a linear subspace of reduced (and possibly sufficient) dimension in which for each case of the database, there is a (possibly unique) parameter value for which the simulation fits the measurements. We first show how this property can help the modeller select a relevant parameter subspace for personalisation. In addition, since the resulting priors in this subspace represent the population statistics in this subspace, they can be used to perform consistent parameter estimation for cases where measurements are possibly different or missing in the database, which we illustrate with the personalisation of a heterogeneous database of 811 cases.
Asunto(s)
Corazón/fisiología , Modelos Cardiovasculares , Algoritmos , Bases de Datos Factuales , Humanos , Volumen SistólicoRESUMEN
Personalised computational models of the heart are of increasing interest for clinical applications due to their discriminative and predictive abilities. However, the simulation of a single heartbeat with a 3D cardiac electromechanical model can be long and computationally expensive, which makes some practical applications, such as the estimation of model parameters from clinical data (the personalisation), very slow. Here we introduce an original multifidelity approach between a 3D cardiac model and a simplified "0D" version of this model, which enables to get reliable (and extremely fast) approximations of the global behaviour of the 3D model using 0D simulations. We then use this multifidelity approximation to speed-up an efficient parameter estimation algorithm, leading to a fast and computationally efficient personalisation method of the 3D model. In particular, we show results on a cohort of 121 different heart geometries and measurements. Finally, an exploitable code of the 0D model with scripts to perform parameter estimation will be released to the community.