Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 21(9): 4013-4020, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33900785

RESUMEN

Free-standing crystalline membranes are highly desirable owing to recent developments in heterogeneous integration of dissimilar materials. Van der Waals (vdW) epitaxy enables the release of crystalline membranes from their substrates. However, suppressed nucleation density due to low surface energy has been a challenge for crystallization; reactive materials synthesis environments can induce detrimental damage to vdW surfaces, often leading to failures in membrane release. This work demonstrates a novel platform based on graphitized SiC for fabricating high-quality free-standing membranes. After mechanically removing epitaxial graphene on a graphitized SiC wafer, the quasi-two-dimensional graphene buffer layer (GBL) surface remains intact for epitaxial growth. The reduced vdW gap between the epilayer and substrate enhances epitaxial interaction, promoting remote epitaxy. Significantly improved nucleation and convergent quality of GaN are achieved on the GBL, resulting in the best quality GaN ever grown on two-dimensional materials. The GBL surface exhibits excellent resistance to harsh growth environments, enabling substrate reuse by repeated growth and exfoliation.


Asunto(s)
Grafito , Cristalización , Semiconductores
2.
Nat Mater ; 17(11): 999-1004, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30297812

RESUMEN

The transparency of two-dimensional (2D) materials to intermolecular interactions of crystalline materials has been an unresolved topic. Here we report that remote atomic interaction through 2D materials is governed by the binding nature, that is, the polarity of atomic bonds, both in the underlying substrates and in 2D material interlayers. Although the potential field from covalent-bonded materials is screened by a monolayer of graphene, that from ionic-bonded materials is strong enough to penetrate through a few layers of graphene. Such field penetration is substantially attenuated by 2D hexagonal boron nitride, which itself has polarization in its atomic bonds. Based on the control of transparency, modulated by the nature of materials as well as interlayer thickness, various types of single-crystalline materials across the periodic table can be epitaxially grown on 2D material-coated substrates. The epitaxial films can subsequently be released as free-standing membranes, which provides unique opportunities for the heterointegration of arbitrary single-crystalline thin films in functional applications.

3.
Nano Lett ; 12(9): 4799-804, 2012 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-22889386

RESUMEN

We report on superconducting nanowire single photon detectors (SNSPDs) based on 30 nm wide nanowires with detection efficiency η ∼ 2.6-5.5% in the wavelength range λ = 0.5-5 µm. We compared the sensitivity of 30 nm wide SNSPDs with the sensitivity of SNSPDs based on wider (85 and 50 nm wide) nanowires for λ = 0.5-5 µm. The detection efficiency of the detectors based on the wider nanowires became negligible at shorter wavelengths than the 30 nm wide SNSPDs. Our 30 nm wide SNSPDs showed 2 orders of magnitude higher detection efficiency (η ∼ 2%) up to longer wavelength (λ = 5 µm) than previously reported. On the basis of our simulations, we expect that by changing the optical coupling scheme and by integrating the detectors in an optical cavity, the detection efficiency of our detectors could be increased by a factor of ∼6.


Asunto(s)
Conductometría/instrumentación , Nanoestructuras/química , Nanoestructuras/efectos de la radiación , Nanotecnología/instrumentación , Fotometría/instrumentación , Conductividad Eléctrica , Diseño de Equipo , Análisis de Falla de Equipo , Tamaño de la Partícula , Fotones
4.
Nano Lett ; 12(6): 2953-8, 2012 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-22624846

RESUMEN

Experimental restrictions imposed on the collection and detection of shortwave-infrared photons (SWIR) have impeded single molecule work on a large class of materials whose optical activity lies in the SWIR. Here we report the successful observation of room-temperature single nanocrystal photoluminescence at SWIR wavelengths using a highly efficient multielement superconducting nanowire single photon detector. We confirm that the photoluminescence from single lead sulfide nanocrystals is strongly antibunched, demonstrating the feasibility of performing sophisticated photon correlation experiments on individual weak SWIR emitters, and, more broadly, paving the way for sensitive measurements of spectral observables on infrared quantum systems that are incompatible with current detection techniques.


Asunto(s)
Nanoestructuras/química , Nanoestructuras/efectos de la radiación , Fotometría/métodos , Espectrofotometría Infrarroja/métodos , Rayos Infrarrojos , Ensayo de Materiales , Tamaño de la Partícula , Fotones
5.
Nano Lett ; 11(5): 2048-53, 2011 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-21456546

RESUMEN

We report efficient single-photon detection (η = 20% at 1550 nm wavelength) with ultranarrow (20 and 30 nm wide) superconducting nanowires, which were shown to be more robust to constrictions and more responsive to 1550 nm wavelength photons than standard superconducting nanowire single-photon detectors, based on 90 nm wide nanowires. We also improved our understanding of the physics of superconducting nanowire avalanche photodetectors, which we used to increase the signal-to-noise ratio of ultranarrow-nanowire detectors by a factor of 4, thus relaxing the requirements on the read-out circuitry and making the devices suitable for a broader range of applications.

6.
Opt Express ; 19(1): 17-31, 2011 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-21263538

RESUMEN

Optical nano-antennae have been integrated with semiconductor lasers to intensify light at the nanoscale and photodiodes to enhance photocurrent. In quantum optics, plasmonic metal structures have been used to enhance nonclassical light emission from single quantum dots. Absorption and detection of single photons from free space could also be enhanced by nanometallic antennae, but this has not previously been demonstrated. Here, we use nano-optical transmission effects in a one-dimensional gold structure, combined with optical cavity resonance, to form optical nano-antennae, which are further used to couple single photons from free space into a 80-nm-wide superconducting nanowire. This antenna-assisted coupling enables a superconducting nanowire single-photon detector with 47% device efficiency at the wavelength of 1550 nm and 9-µm-by-9-µm active area while maintaining a reset time of only 5 ns. We demonstrate nanoscale antenna-like structures to achieve exceptional efficiency and speed in single-photon detection.

7.
Opt Express ; 18(2): 1430-7, 2010 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-20173970

RESUMEN

We demonstrate a new approach to measuring high-order temporal coherences that uses a four-element superconducting nanowire single-photon detector. The four independent, interleaved single-photon-sensitive elements parse a single spatial mode of an optical beam over dimensions smaller than the minimum diffraction-limited spot size. Integrating this device with four-channel time-tagging electronics to generate multi-start, multi-stop histograms enables measurement of temporal coherences up to fourth order for a continuous range of all associated time delays. We observe high-order photon bunching from a chaotic, pseudo-thermal light source, measuring maximum third- and fourth-order coherence values of 5.87 +/- 0.17 and 23.1 +/- 1.8, respectively, in agreement with the theoretically predicted values of 3! = 6 and 4! = 24. Laser light, by contrast, is confirmed to have coherence values of approximately 1 for second, third and fourth orders at all time delays.


Asunto(s)
Rayos Láser , Dinámicas no Lineales , Dispositivos Ópticos , Fotometría/instrumentación , Fotometría/métodos , Transductores , Diseño de Equipo , Análisis de Falla de Equipo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA