Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
2.
New Phytol ; 240(5): 2035-2049, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37691273

RESUMEN

Recent studies on root traits have shown that there are two axes explaining trait variation belowground: the collaboration axis with mycorrhizal partners and the conservation ('fast - slow') axis. However, it is yet unknown whether these trait axes affect the assembly of soilborne fungi. We expect saprotrophic fungi to link to the conservation axis of root traits, whereas pathogenic and arbuscular mycorrhizal fungi link to the collaboration axis, but in opposite directions, as arbuscular mycorrhizal fungi might provide pathogen protection. To test these hypotheses, we sequenced rhizosphere fungal communities and measured root traits in monocultures of 25 grassland plant species, differing in age. Within the fungal guilds, we evaluated fungal species richness, relative abundance and community composition. Contrary to our hypotheses, fungal diversity and relative abundance were not strongly related to the root trait axes. However, saprotrophic fungal community composition was affected by the conservation gradient and pathogenic community composition by the collaboration gradient. The rhizosphere AMF community composition did not change along the collaboration gradient, even though the root trait axis was in line with the root mycorrhizal colonization rate. Overall, our results indicate that in the long term, the root trait axes are linked with fungal community composition.


Asunto(s)
Micorrizas , Rizosfera , Raíces de Plantas/microbiología , Pradera , Micorrizas/fisiología , Plantas/microbiología , Hongos/fisiología , Microbiología del Suelo , Suelo
3.
Mol Ecol ; 32(13): 3763-3777, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37081579

RESUMEN

Root-associated fungi could play a role in determining both the positive relationship between plant diversity and productivity in experimental grasslands, and its strengthening over time. This hypothesis assumes that specialized pathogenic and mutualistic fungal communities gradually assemble over time, enhancing plant growth more in species-rich than in species-poor plots. To test this hypothesis, we used high-throughput amplicon sequencing to characterize root-associated fungal communities in experimental grasslands of 1 and 15 years of age with varying levels of plant species richness. Specifically, we tested whether the relationship between fungal communities and plant richness and productivity becomes stronger with the age of the experimental plots. Our results showed that fungal diversity increased with plant diversity, but this relationship weakened rather than strengthened over the two time points. Contrastingly, fungal community composition showed increasing associations with plant diversity over time, suggesting a gradual build-up of specific fungal assemblages. Analyses of different fungal guilds showed that these changes were particularly marked in pathogenic fungi, whose shifts in relative abundance are consistent with the pathogen dilution hypothesis in diverse plant communities. Our results suggest that root-associated fungal pathogens play more specific roles in determining the diversity-productivity relationship than other root-associated plant symbionts.


Asunto(s)
Micobioma , Micobioma/genética , Raíces de Plantas/microbiología , Hongos/genética , Plantas , Simbiosis/genética , Microbiología del Suelo
4.
New Phytol ; 233(3): 1303-1316, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34787907

RESUMEN

Biodiversity can reduce or increase disease transmission. These divergent effects suggest that community composition rather than diversity per se determines disease transmission. In natural plant communities, little is known about the functional roles of neighbouring plant species in belowground disease transmission. Here, we experimentally investigated disease transmission of a fungal root pathogen (Rhizoctonia solani) in two focal plant species in combinations with four neighbour species of two ages. We developed stochastic models to test the relative importance of two transmission-modifying mechanisms: (1) infected hosts serve as nutrient supply to increase hyphal growth, so that successful disease transmission is self-reinforcing; and (2) plant resistance increases during plant development. Neighbouring plants either reduced or increased disease transmission in the focal plants. These effects depended on neighbour age, but could not be explained by a simple dichotomy between hosts and nonhost neighbours. Model selection revealed that both transmission-modifying mechanisms are relevant and that focal host-neighbour interactions changed which mechanisms steered disease transmission rate. Our work shows that neighbour-induced shifts in the importance of these mechanisms across root networks either make or break disease transmission chains. Understanding how diversity affects disease transmission thus requires integrating interactions between focal and neighbour species and their pathogens.


Asunto(s)
Biodiversidad , Plantas , Nutrientes , Desarrollo de la Planta , Plantas/microbiología
5.
New Phytol ; 234(6): 1929-1944, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35338649

RESUMEN

Feedback between plants and soil microbial communities can be a powerful driver of vegetation dynamics. Plants elicit changes in the soil microbiome that either promote or suppress conspecifics at the same location, thereby regulating population density-dependence and species co-existence. Such effects are often attributed to the accumulation of host-specific antagonistic or beneficial microbiota in the rhizosphere. However, the identity and host-specificity of the microbial taxa involved are rarely empirically assessed. Here we review the evidence for host-specificity in plant-associated microbes and propose that specific plant-soil feedbacks can also be driven by generalists. We outline the potential mechanisms by which generalist microbial pathogens, mutualists and decomposers can generate differential effects on plant hosts and synthesize existing evidence to predict these effects as a function of plant investments into defence, microbial mutualists and dispersal. Importantly, the capacity of generalist microbiota to drive plant-soil feedbacks depends not only on the traits of individual plants but also on the phylogenetic and functional diversity of plant communities. Identifying factors that promote specialization or generalism in plant-microbial interactions and thereby modulate the impact of microbiota on plant performance will advance our understanding of the mechanisms underlying plant-soil feedback and the ways it contributes to plant co-existence.


Asunto(s)
Microbiología del Suelo , Suelo , Retroalimentación , Filogenia , Raíces de Plantas/fisiología , Plantas , Rizosfera , Simbiosis
6.
New Phytol ; 231(3): 1171-1182, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33930184

RESUMEN

Recent studies show that the variation in root functional traits can be explained by a two-dimensional trait framework, containing a 'collaboration' axis in addition to the classical fast-slow 'conservation' axis. This collaboration axis spans from thin and highly branched roots that employ a 'do-it-yourself' strategy to thick and sparsely branched roots that 'outsource' nutrient uptake to symbiotic arbuscular mycorrhizal fungi (AMF). Here, we explore the functionality of this collaboration axis by quantifying how interactions with AMF change the impact of root traits on plant performance. To this end, we developed a novel functional-structural plant (FSP) modelling approach that simulates plants competing for light and nutrients in the presence or absence of AMF. Our simulation results support the notion that in the absence of AMF, plants rely on thin, highly branched roots for their nutrient uptake. The presence of AMF, however, promotes thick, unbranched roots as an alternative strategy for uptake of immobile phosphorus, but not for mobile nitrogen. This provides further support for a root trait framework that accommodates for the interactive effect of roots and AMF. Our modelling study offers unique opportunities to incorporate soil microbial interactions into root functionality as it integrates consequences of belowground trait expression.


Asunto(s)
Micorrizas , Nutrientes , Fósforo , Raíces de Plantas , Suelo
7.
New Phytol ; 232(1): 42-59, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34197626

RESUMEN

Plant trait variation drives plant function, community composition and ecosystem processes. However, our current understanding of trait variation disproportionately relies on aboveground observations. Here we integrate root traits into the global framework of plant form and function. We developed and tested an overarching conceptual framework that integrates two recently identified root trait gradients with a well-established aboveground plant trait framework. We confronted our novel framework with published relationships between above- and belowground trait analogues and with multivariate analyses of above- and belowground traits of 2510 species. Our traits represent the leaf and root conservation gradients (specific leaf area, leaf and root nitrogen concentration, and root tissue density), the root collaboration gradient (root diameter and specific root length) and the plant size gradient (plant height and rooting depth). We found that an integrated, whole-plant trait space required as much as four axes. The two main axes represented the fast-slow 'conservation' gradient on which leaf and fine-root traits were well aligned, and the 'collaboration' gradient in roots. The two additional axes were separate, orthogonal plant size axes for height and rooting depth. This perspective on the multidimensional nature of plant trait variation better encompasses plant function and influence on the surrounding environment.


Asunto(s)
Ecosistema , Plantas , Fenotipo , Hojas de la Planta
8.
New Phytol ; 232(3): 1123-1158, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33159479

RESUMEN

The effects of plants on the biosphere, atmosphere and geosphere are key determinants of terrestrial ecosystem functioning. However, despite substantial progress made regarding plant belowground components, we are still only beginning to explore the complex relationships between root traits and functions. Drawing on the literature in plant physiology, ecophysiology, ecology, agronomy and soil science, we reviewed 24 aspects of plant and ecosystem functioning and their relationships with a number of root system traits, including aspects of architecture, physiology, morphology, anatomy, chemistry, biomechanics and biotic interactions. Based on this assessment, we critically evaluated the current strengths and gaps in our knowledge, and identify future research challenges in the field of root ecology. Most importantly, we found that belowground traits with the broadest importance in plant and ecosystem functioning are not those most commonly measured. Also, the estimation of trait relative importance for functioning requires us to consider a more comprehensive range of functionally relevant traits from a diverse range of species, across environments and over time series. We also advocate that establishing causal hierarchical links among root traits will provide a hypothesis-based framework to identify the most parsimonious sets of traits with the strongest links on functions, and to link genotypes to plant and ecosystem functioning.


Asunto(s)
Ecosistema , Plantas , Atmósfera , Ecología , Fenotipo
9.
New Phytol ; 232(3): 973-1122, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34608637

RESUMEN

In the context of a recent massive increase in research on plant root functions and their impact on the environment, root ecologists currently face many important challenges to keep on generating cutting-edge, meaningful and integrated knowledge. Consideration of the below-ground components in plant and ecosystem studies has been consistently called for in recent decades, but methodology is disparate and sometimes inappropriate. This handbook, based on the collective effort of a large team of experts, will improve trait comparisons across studies and integration of information across databases by providing standardised methods and controlled vocabularies. It is meant to be used not only as starting point by students and scientists who desire working on below-ground ecosystems, but also by experts for consolidating and broadening their views on multiple aspects of root ecology. Beyond the classical compilation of measurement protocols, we have synthesised recommendations from the literature to provide key background knowledge useful for: (1) defining below-ground plant entities and giving keys for their meaningful dissection, classification and naming beyond the classical fine-root vs coarse-root approach; (2) considering the specificity of root research to produce sound laboratory and field data; (3) describing typical, but overlooked steps for studying roots (e.g. root handling, cleaning and storage); and (4) gathering metadata necessary for the interpretation of results and their reuse. Most importantly, all root traits have been introduced with some degree of ecological context that will be a foundation for understanding their ecological meaning, their typical use and uncertainties, and some methodological and conceptual perspectives for future research. Considering all of this, we urge readers not to solely extract protocol recommendations for trait measurements from this work, but to take a moment to read and reflect on the extensive information contained in this broader guide to root ecology, including sections I-VII and the many introductions to each section and root trait description. Finally, it is critical to understand that a major aim of this guide is to help break down barriers between the many subdisciplines of root ecology and ecophysiology, broaden researchers' views on the multiple aspects of root study and create favourable conditions for the inception of comprehensive experiments on the role of roots in plant and ecosystem functioning.


Asunto(s)
Ecosistema , Plantas , Bases de Datos Factuales , Ecología , Fenotipo
10.
Oecologia ; 191(1): 177-190, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31401664

RESUMEN

Global climate models predict more frequent periods of drought stress alternated by heavier, but fewer rainfall events in the future. Biodiversity studies have shown that such changed drought stress may be mitigated by plant species richness. Here, we investigate if grassland communities, differing in species richness, respond differently to climatic extremes within the growing season. In a 3-year outdoor mesocosm experiment, four grassland species in both monoculture and mixture were subjected to a rainfall distribution regime with two levels: periods of severe drought in the summer intermitted by extreme rainfall events versus regular rainfall over time. Both treatments received the same amount of water over the season. Extreme rainfall combined with drought periods resulted in a 15% decrease in aboveground biomass in the second and third year, compared to the regular rainfall regime. Root biomass was also reduced in the extreme rainfall treatment, particularly in the top soil layer (- 40%). All species developed higher water use efficiencies (less negative leaf δ13C) in extreme rainfall than in regular rainfall. These responses to the rainfall/drought treatment were independent of species richness, although the mixtures were on an average more productive in terms of biomass than the monocultures. Our experimental results suggest that mixtures are similarly able to buffer these within-season rainfall extremes than monocultures, which contrasts with findings in the studies on natural droughts. Our work demonstrates the importance of investigating the interactions between rainfall distribution and drought periods for understanding effects of climate change on plant community performance.


Asunto(s)
Sequías , Pradera , Biodiversidad , Biomasa , Cambio Climático , Plantas
11.
Mycorrhiza ; 29(3): 251-261, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30919070

RESUMEN

Plant-soil feedback (PSF) describes the process whereby plant species modify the soil environment, which subsequently impacts the growth of the same or another plant species. Our aim was to explore PSF by two maize varieties (a landrace and a hybrid variety) and three arbuscular mycorrhizal fungi (AMF) species (Funneliformis mosseae, Claroideoglomus etunicatum, Gigaspora margarita, and the mixture). We carried out a pot experiment with a conditioning and a feedback phase to determine PSF with different species of AMF and with a non-mycorrhizal control. Sterilized soil was conditioned separately by each variety, with or without AMF; in the feedback phase, each soil community was used to grow each in its "home" soil and in the "away" soil. Plant performance was assessed as shoot biomass, phosphorus (P) concentration and P content, and fungal performance was assessed as mycorrhizal colonization and hyphal length density. Both maize varieties were differentially influenced by AMF in the conditioning phase. In the feedback phase, PSF was generally negative for non-mycorrhizal plants or when plants were colonized by G. margarita, whereas PSF was positive in the other three AMF treatments. When plants were grown on home soil, hyphal length density was larger than on away soil. We conclude that different maize varieties can strengthen positive plant-soil feedback for themselves through beneficial mutualists for themselves, but not across the maize varieties.


Asunto(s)
Hifa/crecimiento & desarrollo , Micorrizas/fisiología , Simbiosis , Zea mays/microbiología , Biomasa , Hifa/fisiología , Fósforo/análisis , Raíces de Plantas/microbiología , Suelo/química , Microbiología del Suelo , Zea mays/fisiología
12.
New Phytol ; 218(2): 542-553, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29468690

RESUMEN

There is consensus that plant species richness enhances plant productivity within natural grasslands, but the underlying drivers remain debated. Recently, differential accumulation of soil-borne fungal pathogens across the plant diversity gradient has been proposed as a cause of this pattern. However, the below-ground environment has generally been treated as a 'black box' in biodiversity experiments, leaving these fungi unidentified. Using next generation sequencing and pathogenicity assays, we analysed the community composition of root-associated fungi from a biodiversity experiment to examine if evidence exists for host specificity and negative density dependence in the interplay between soil-borne fungi, plant diversity and productivity. Plant species were colonised by distinct (pathogenic) fungal communities and isolated fungal species showed negative, species-specific effects on plant growth. Moreover, 57% of the pathogenic fungal operational taxonomic units (OTUs) recorded in plant monocultures were not detected in eight plant species plots, suggesting a loss of pathogenic OTUs with plant diversity. Our work provides strong evidence for host specificity and negative density-dependent effects of root-associated fungi on plant species in grasslands. Our work substantiates the hypothesis that fungal root pathogens are an important driver of biodiversity-ecosystem functioning relationships.


Asunto(s)
Biodiversidad , Hongos/fisiología , Desarrollo de la Planta , Plantas/microbiología , Microbiología del Suelo , Biomasa , Hongos/patogenicidad , Interacciones Huésped-Patógeno , Modelos Biológicos , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Especificidad de la Especie
13.
New Phytol ; 213(2): 645-656, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27717024

RESUMEN

Flooding is expected to increase in frequency and severity in the future. The ecological consequences of flooding are the combined result of species-specific plant traits and ecological context. However, the majority of past flooding research has focused on individual model species under highly controlled conditions. An early summer flooding event in a grassland biodiversity experiment in Jena, Germany, provided the opportunity to assess flooding responses of 60 grassland species in monocultures and 16-species mixtures. We examined plant biomass, species-specific traits (plant height, specific leaf area (SLA), root aerenchyma, starch content) and soil porosity. We found that, on average, plant species were less negatively affected by the flood when grown in higher-diversity plots in July 2013. By September 2013, grasses were unaffected by the flood regardless of plant diversity, and legumes were severely negatively affected regardless of plant diversity. Plants with greater SLA and more root aerenchyma performed better in September. Soil porosity was higher in higher-diversity plots and had a positive effect on plant performance. As floods become more frequent and severe in the future, growing flood-sensitive plants in higher-diversity communities and in soil with greater soil aeration may attenuate the most negative effects of flooding.


Asunto(s)
Inundaciones , Desarrollo de la Planta , Biomasa , Hojas de la Planta/anatomía & histología , Porosidad , Carácter Cuantitativo Heredable , Suelo , Especificidad de la Especie
15.
Oecologia ; 185(3): 499-511, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28929254

RESUMEN

Plant diversity influences many ecosystem functions including root decomposition. However, due to the presence of multiple pathways via which plant diversity may affect root decomposition, our mechanistic understanding of their relationships is limited. In a grassland biodiversity experiment, we simultaneously assessed the effects of three pathways-root litter quality, soil biota, and soil abiotic conditions-on the relationships between plant diversity (in terms of species richness and the presence/absence of grasses and legumes) and root decomposition using structural equation modeling. Our final structural equation model explained 70% of the variation in root mass loss. However, different measures of plant diversity included in our model operated via different pathways to alter root mass loss. Plant species richness had a negative effect on root mass loss. This was partially due to increased Oribatida abundance, but was weakened by enhanced root potassium (K) concentration in more diverse mixtures. Equally, grass presence negatively affected root mass loss. This effect of grasses was mostly mediated via increased root lignin concentration and supported via increased Oribatida abundance and decreased root K concentration. In contrast, legume presence showed a net positive effect on root mass loss via decreased root lignin concentration and increased root magnesium concentration, both of which led to enhanced root mass loss. Overall, the different measures of plant diversity had contrasting effects on root decomposition. Furthermore, we found that root chemistry and soil biota but not root morphology or soil abiotic conditions mediated these effects of plant diversity on root decomposition.


Asunto(s)
Biodiversidad , Fabaceae/fisiología , Raíces de Plantas/química , Poaceae/fisiología , Suelo/química , Ecosistema , Microbiología del Suelo
16.
New Phytol ; 211(4): 1159-69, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27174359

RESUMEN

Contents 1159 I. 1159 II. 1161 III. 1164 IV. 1166 1167 References 1167 SUMMARY: The search for a root economics spectrum (RES) has been sparked by recent interest in trait-based plant ecology. By analogy with the one-dimensional leaf economics spectrum (LES), fine-root traits are hypothesised to match leaf traits which are coordinated along one axis from resource acquisitive to conservative traits. However, our literature review and meta-level analysis reveal no consistent evidence of an RES mirroring an LES. Instead the RES appears to be multidimensional. We discuss three fundamental differences contributing to the discrepancy between these spectra. First, root traits are simultaneously constrained by various environmental drivers not necessarily related to resource uptake. Second, above- and belowground traits cannot be considered analogues, because they function differently and might not be related to resource uptake in a similar manner. Third, mycorrhizal interactions may offset selection for an RES. Understanding and explaining the belowground mechanisms and trade-offs that drive variation in root traits, resource acquisition and plant performance across species, thus requires a fundamentally different approach than applied aboveground. We therefore call for studies that can functionally incorporate the root traits involved in resource uptake, the complex soil environment and the various soil resource uptake mechanisms - particularly the mycorrhizal pathway - in a multidimensional root trait framework.


Asunto(s)
Raíces de Plantas/fisiología , Carácter Cuantitativo Heredable , Árboles/fisiología , Micorrizas/fisiología , Hojas de la Planta/fisiología
17.
Ecol Lett ; 18(12): 1356-65, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26415778

RESUMEN

Plant species richness (PSR) increases nutrient uptake which depletes bioavailable nutrient pools in soil. No such relationship between plant uptake and availability in soil was found for phosphorus (P). We explored PSR effects on P mobilisation [phosphatase activity (PA)] in soil. PA increased with PSR. The positive PSR effect was not solely due to an increase in Corg concentrations because PSR remained significant if related to PA:Corg . An increase in PA per unit Corg increases the probability of the temporal and spatial match between substrate, enzyme and microorganism potentially serving as an adaption to competition. Carbon use efficiency of microorganisms (Cmic :Corg ) increased with increasing PSR while enzyme exudation efficiency (PA:Cmic ) remained constant. These findings suggest the need for efficient C rather than P cycling underlying the relationship between PSR and PA. Our results indicate that the coupling between C and P cycling in soil becomes tighter with increasing PSR.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biodiversidad , Monoéster Fosfórico Hidrolasas/metabolismo , Fenómenos Fisiológicos de las Plantas , Microbiología del Suelo , Alemania , Fósforo/metabolismo , Raíces de Plantas/metabolismo , Rizosfera , Suelo/química
18.
New Phytol ; 207(3): 830-40, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25871977

RESUMEN

Plant-soil feedback is receiving increasing interest as a factor influencing plant competition and species coexistence in grasslands. However, we do not know how spatial distribution of plant-soil feedback affects plant below-ground interactions. We investigated the way in which spatial heterogeneity of soil biota affects competitive interactions in grassland plant species. We performed a pairwise competition experiment combined with heterogeneous distribution of soil biota using four grassland plant species and their soil biota. Patches were applied as quadrants of 'own' and 'foreign' soils from all plant species in all pairwise combinations. To evaluate interspecific root responses, species-specific root biomass was quantified using real-time PCR. All plant species suffered negative soil feedback, but strength was species-specific, reflected by a decrease in root growth in own compared with foreign soil. Reduction in root growth in own patches by the superior plant competitor provided opportunities for inferior competitors to increase root biomass in these patches. These patterns did not cascade into above-ground effects during our experiment. We show that root distributions can be determined by spatial heterogeneity of soil biota, affecting plant below-ground competitive interactions. Thus, spatial heterogeneity of soil biota may contribute to plant species coexistence in species-rich grasslands.


Asunto(s)
Retroalimentación , Raíces de Plantas/fisiología , Poaceae/fisiología , Suelo , Biomasa , Brotes de la Planta/fisiología , Especificidad de la Especie
19.
Ecol Appl ; 24(5): 1167-77, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25154104

RESUMEN

Biochar (pyrolyzed biomass) amendment to soils has been shown to have a multitude of positive effects, e.g., on crop yield, soil quality, nutrient cycling, and carbon sequestration. So far the majority of studies have focused on agricultural systems, typically with relatively low species diversity and annual cropping schemes. How biochar amendment affects plant communities in more complex and diverse ecosystems that can evolve over time is largely unknown. We investigated such effects in a field experiment at a Dutch nature restoration area. In April 2011, we set up an experiment using biochar produced from cuttings collected from a local natural grassland. The material was pyrolyzed at 400 degrees C or at 600 degrees C. After biochar or residue (non-pyrolyzed cuttings) application (10 Mg/ha), all plots, including control (0 Mg/ ha) plots, were sown with an 18-species grassland mixture. In August 2011, we determined characteristics of the developed plant community, as well as soil nutrient status. Biochar amendment did not alter total plant productivity, but it had a strong and significant effect on plant community composition. Legumes were three times as abundant and individual legume plants increased four times in biomass in plots that received biochar as compared to the control treatment. Biomass of the most abundant forb (Plantago lanceolata) was not affected by biochar addition. Available phosphorous, potassium, and pH were significantly higher in soils that received biochar than in Control soils. The rate of biological nitrogen fixation and seed germination were not altered by biochar amendment, but the total amount of biological N fixed per Trifolium pratense (red clover) plant was more than four times greater in biochar-amended soil. This study demonstrates that biochar amendment has a strong and rapid effect on plant communities and soil nutrients. Over time these changes may cascade up to other trophic groups, including above- and belowground organisms. Our results emphasize the need for long-term studies that examine not only the short-term effects of biochar amendment, but also follow how these effects evolve over time and affect ecosystem functioning.


Asunto(s)
Agricultura , Biomasa , Carbón Orgánico , Ecosistema , Suelo , Trifolium
20.
Oecologia ; 176(1): 1-10, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24894371

RESUMEN

Plant responses to competition have often been described as passive consequences of reduced resource availability. However, plants have mechanisms to forage for favorable conditions and anticipate competition scenarios. Despite the progresses made in understanding the role of light signaling in modulating plant-plant interactions, little is known about how plants use and integrate information gathered by their photoreceptors aboveground to regulate performance belowground. Given that the phytochrome family of photoreceptors plays a key role in the acquisition of information about the proximity of neighbors and canopy cover, it is tempting to speculate that changes in the red:far-red (R:FR) ratio perceived by aboveground plant parts have important implications shaping plant behavior belowground. Exploring data from published experiments, we assess the neglected role of light signaling in the control of root function. The available evidence indicates that plant exposure to low R:FR ratios affects root growth and morphology, root exudate profiles, and interactions with beneficial soil microorganisms. Although dependent on species identity, signals perceived aboveground are likely to affect root-to-root interactions. Root systems could also be guided to deploy new growth predominantly in open areas by light signals perceived by the shoots. Studying interactions between above- and belowground plant-plant signaling is expected to improve our understanding of the mechanisms of plant competition.


Asunto(s)
Ecosistema , Fototransducción/fisiología , Luz , Modelos Biológicos , Fenómenos Fisiológicos de las Plantas , Raíces de Plantas/crecimiento & desarrollo , Microbiología del Suelo , Fitocromo B/metabolismo , Raíces de Plantas/metabolismo , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA