Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Mol Phylogenet Evol ; 184: 107803, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37120114

RESUMEN

With the advent of genomics, sequencing thousands of loci from hundreds of individuals now appears feasible at reasonable costs, allowing complex phylogenies to be resolved. This is particularly relevant for cnidarians, for which insufficient data is available due to the small number of currently available markers and obscures species boundaries. Difficulties in inferring gene trees and morphological incongruences further blur the study and conservation of these organisms. Yet, can genomics alone be used to delimit species? Here, focusing on the coral genus Pocillopora, whose colonies play key roles in Indo-Pacific reef ecosystems but have challenged taxonomists for decades, we explored and discussed the usefulness of multiple criteria (genetics, morphology, biogeography and symbiosis ecology) to delimit species of this genus. Phylogenetic inferences, clustering approaches and species delimitation methods based on genome-wide single-nucleotide polymorphisms (SNP) were first used to resolve Pocillopora phylogeny and propose genomic species hypotheses from 356 colonies sampled across the Indo-Pacific (western Indian Ocean, tropical southwestern Pacific and south-east Polynesia). These species hypotheses were then compared to other lines of evidence based on genetic, morphology, biogeography and symbiont associations. Out of 21 species hypotheses delimited by genomics, 13 were strongly supported by all approaches, while six could represent either undescribed species or nominal species that have been synonymised incorrectly. Altogether, our results support (1) the obsolescence of macromorphology (i.e., overall colony and branches shape) but the relevance of micromorphology (i.e., corallite structures) to refine Pocillopora species boundaries, (2) the relevance of the mtORF (coupled with other markers in some cases) as a diagnostic marker of most species, (3) the requirement of molecular identification when species identity of colonies is absolutely necessary to interpret results, as morphology can blur species identification in the field, and (4) the need for a taxonomic revision of the genus Pocillopora. These results give new insights into the usefulness of multiple criteria for resolving Pocillopora, and more widely, scleractinian species boundaries, and will ultimately contribute to the taxonomic revision of this genus and the conservation of its species.


Asunto(s)
Antozoos , Animales , Ecosistema , Filogenia , Genómica , Polinesia
2.
Mol Ecol ; 29(12): 2218-2233, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32428327

RESUMEN

Elucidating demographic history during the settlement of ecological communities is crucial for properly inferring the mechanisms that shape patterns of species diversity and their persistence through time. Here, we used genomic data and coalescent-based approaches to elucidate for the first time the demographic dynamics associated with the settlement by endemic reef fish fauna of one of the most remote peripheral islands of the Pacific Ocean, Rapa Nui (Easter Island). We compared the demographic history of nine endemic species in order to explore their demographic responses to Pleistocene climatic fluctuations. We found that species endemic to Rapa Nui share a common demographic history, as signatures of population expansions were retrieved for almost all of the species studied here, and synchronous demographic expansions initiated during the last glacial period were recovered for more than half of the studied species. These results suggest that eustatic fluctuations associated with Milankovitch cycles have played a central role in species demographic histories and in the final stage of the community assembly of many Rapa Nui reef fishes. Specifically, sea level lowstands resulted in the maximum reef habitat extension for Rapa Nui endemic species; we discuss the potential role of seamounts in allowing endemic species to cope with Pleistocene climatic fluctuations, and we highlight the importance of local historical processes over regional ones. Overall, our results shed light on the mechanisms by which endemism arises and is maintained in peripheral reef fish fauna.


Asunto(s)
Adaptación Biológica/genética , Evolución Biológica , Cambio Climático , Peces , Animales , Arrecifes de Coral , Peces/clasificación , Peces/genética , Islas , Océano Pacífico , Polinesia
3.
Proc Natl Acad Sci U S A ; 114(45): E9589-E9597, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29078308

RESUMEN

About 100 km east of Rome, in the central Apennine Mountains, a critically endangered population of ∼50 brown bears live in complete isolation. Mating outside this population is prevented by several 100 km of bear-free territories. We exploited this natural experiment to better understand the gene and genomic consequences of surviving at extremely small population size. We found that brown bear populations in Europe lost connectivity since Neolithic times, when farming communities expanded and forest burning was used for land clearance. In central Italy, this resulted in a 40-fold population decline. The overall genomic impact of this decline included the complete loss of variation in the mitochondrial genome and along long stretches of the nuclear genome. Several private and deleterious amino acid changes were fixed by random drift; predicted effects include energy deficit, muscle weakness, anomalies in cranial and skeletal development, and reduced aggressiveness. Despite this extreme loss of diversity, Apennine bear genomes show nonrandom peaks of high variation, possibly maintained by balancing selection, at genomic regions significantly enriched for genes associated with immune and olfactory systems. Challenging the paradigm of increased extinction risk in small populations, we suggest that random fixation of deleterious alleles (i) can be an important driver of divergence in isolation, (ii) can be tolerated when balancing selection prevents random loss of variation at important genes, and (iii) is followed by or results directly in favorable behavioral changes.


Asunto(s)
Variación Genética/genética , Genoma Mitocondrial/genética , Ursidae/genética , Agresión/fisiología , Alelos , Aminoácidos/genética , Animales , Genómica/métodos , Filogenia , Densidad de Población , Ciudad de Roma , Análisis de Secuencia de ADN
4.
Heredity (Edinb) ; 122(2): 150-171, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29795180

RESUMEN

North Africa is now recognized as a major area for the emergence and dispersal of anatomically modern humans from at least 315 kya. The Mediterranean Basin is thus particularly suited to study the role of climate versus human-mediated changes on the evolutionary history of species. The Algerian mouse (Mus spretus Lataste) is an endemic species from this basin, with its distribution restricted to North Africa (from Libya to Morocco), Iberian Peninsula and South of France. A rich paleontological record of M. spretus exists in North Africa, suggesting hypotheses concerning colonization pathways, and the demographic and morphologic history of this species. Here we combined genetic (3 mitochondrial DNA loci and 18 microsatellites) and climatic niche modeling data to infer the evolutionary history of the Algerian mouse. We collected 646 new individuals in 51 localities. Our results are consistent with an anthropogenic translocation of the Algerian mouse from North Africa to the Iberian Peninsula via Neolithic navigators, probably from the Tingitane Peninsula. Once arrived in Spain, suitable climatic conditions would then have favored the dispersion of the Algerian mice to France. The morphological differentiation observed between Spanish, French and North African populations could be explained by a founder effect and possibly local adaptation. This article helps to better understand the role of climate versus human-mediated changes on the evolutionary history of mammal species in the Mediterranean Basin.


Asunto(s)
Migración Animal , Ratones/crecimiento & desarrollo , África del Norte , Animales , Clima , ADN Mitocondrial/genética , Europa (Continente) , Ratones/clasificación , Ratones/genética , Ratones/fisiología , Repeticiones de Microsatélite , Filogenia , España
5.
Heredity (Edinb) ; 122(6): 759-769, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30459340

RESUMEN

The evolutionary history of species is a dynamic process as they modify, expand, and contract their spatial distributions over time. Range expansions (REs) occur through a series of founder events that are followed by migration among neighboring demes. The process usually results in structured metapopulations and leaves a distinct signature in the genetic variability of species. Explicitly modeling the consequences of complex demographic events such as REs is computationally very intensive. Here we propose an an alternative approach that requires less computational effort than a comprehensive RE model, but that can recover the demography of species undergoing a RE, by combining spatially explicit modelling with simplified but realistic metapopulation models. We examine the demographic and colonization history of Carcharhinus melanopterus, an abundant reef-associated shark, as a test case. We first used a population genomics approach to statistically confirm the occurrence of a RE in C. melanopterus, and identify its origin in the Indo-Australian Archipelago. Spatial genetic modelling identified two waves of stepping-stone colonization: an eastward wave moving through the Pacific and a westward one moving through the Indian Ocean. We show that metapopulation models best describe the demographic history of this species and that not accounting for this may lead to incorrectly interpreting the observed genetic variation as signals of widespread population bottlenecks. Our study highlights insights that can be gained about demography by coupling metapopulation models with spatial modeling and underscores the need for cautious interpretation of population genetic data when advancing conservation priorities.


Asunto(s)
Tiburones/genética , Animales , Demografía , Genética de Población , Océano Índico
6.
PLoS Genet ; 12(3): e1005877, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26943927

RESUMEN

Inferring the ancestral dynamics of effective population size is a long-standing question in population genetics, which can now be tackled much more accurately thanks to the massive genomic data available in many species. Several promising methods that take advantage of whole-genome sequences have been recently developed in this context. However, they can only be applied to rather small samples, which limits their ability to estimate recent population size history. Besides, they can be very sensitive to sequencing or phasing errors. Here we introduce a new approximate Bayesian computation approach named PopSizeABC that allows estimating the evolution of the effective population size through time, using a large sample of complete genomes. This sample is summarized using the folded allele frequency spectrum and the average zygotic linkage disequilibrium at different bins of physical distance, two classes of statistics that are widely used in population genetics and can be easily computed from unphased and unpolarized SNP data. Our approach provides accurate estimations of past population sizes, from the very first generations before present back to the expected time to the most recent common ancestor of the sample, as shown by simulations under a wide range of demographic scenarios. When applied to samples of 15 or 25 complete genomes in four cattle breeds (Angus, Fleckvieh, Holstein and Jersey), PopSizeABC revealed a series of population declines, related to historical events such as domestication or modern breed creation. We further highlight that our approach is robust to sequencing errors, provided summary statistics are computed from SNPs with common alleles.


Asunto(s)
Cruzamiento , Genética de Población , Desequilibrio de Ligamiento/genética , Densidad de Población , Alelos , Animales , Teorema de Bayes , Bovinos , Polimorfismo de Nucleótido Simple
7.
Mol Phylogenet Evol ; 110: 122-126, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28286223

RESUMEN

We use a genomic sampling of both nuclear and mitochondrial DNA markers to examine a pattern of genetic admixture between Carcharhinus galapagensis (Galapagos sharks) and Carcharhinus obscurus (dusky sharks), two well-known and closely related sharks that have been recognized as valid species for more than 100years. We describe widespread mitochondrial-nuclear discordance in which these species are readily distinguishable based on 2152 nuclear single nucleotide polymorphisms from 910 independent autosomal regions, but show pervasive mitochondrial admixture. The species are superficially morphologically cryptic as adults but show marked differences in internal anatomy, as well as niche separation. There was no indication of ongoing hybridization between the species. We conclude that the observed mitochondrial-nuclear discordance is likely due to historical mitochondrial introgression following a range expansion.


Asunto(s)
Pool de Genes , Mitocondrias/genética , Tiburones/genética , Animales , ADN Mitocondrial/genética , Ecosistema , Geografía , Haplotipos/genética , Filogenia , Especificidad de la Especie
8.
Mol Ecol ; 22(6): 1666-82, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23398505

RESUMEN

In the last few years, improved analytical tools and the integration of genetic data with multiple sources of information have shown that temperate species exhibited more complex responses to ice ages than previously thought. In this study, we investigated how Pleistocene climatic changes affected the current distribution and genetic diversity of European populations of the tick Ixodes ricinus, an ectoparasite with high ecological plasticity. We first used mitochondrial and nuclear genetic markers to investigate the phylogeographic structure of the species and its Pleistocene history using coalescent-based methods; then we used species distribution modelling to infer the climatic niche of the species at last glacial maximum; finally, we reviewed the literature on the I. ricinus hosts to identify the locations of their glacial refugia. Our results support the scenario that during the last glacial phase, I. ricinus never experienced a prolonged allopatric divergence in separate glacial refugia, but persisted with interconnected populations across Southern and Central Europe. The generalist behaviour in host choice of I. ricinus would have played a major role in maintaining connections between its populations. Although most of the hosts persisted in separate refugia, from the point of view of I. ricinus, they represented a continuity of 'bridges' among populations. Our study highlights the importance of species-specific ecology in affecting responses to Pleistocene glacial-interglacial cycles. Together with other cases in Europe and elsewhere, it contributes to setting new hypotheses on how species with wide ecological plasticity coped with Pleistocene climatic changes.


Asunto(s)
Cambio Climático , Evolución Molecular , Variación Genética , Ixodes/genética , Animales , Teorema de Bayes , Núcleo Celular/genética , ADN Mitocondrial/genética , Europa (Continente) , Haplotipos , Modelos Genéticos , Filogeografía , Análisis de Secuencia de ADN
9.
Ecol Evol ; 13(1): e9746, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36644707

RESUMEN

Designing appropriate management plans requires knowledge of both the dispersal ability and what has shaped the current distribution of the species under consideration. Here, we investigated the evolutionary history of the endangered gray reef shark (Carcharhinus amblyrhynchos) across its range by sequencing thousands of RADseq loci in 173 individuals in the Indo-Pacific (IP). We first bring evidence of the occurrence of a range expansion (RE) originating close to the Indo-Australian Archipelago (IAA) where two stepping-stone waves (east and westward) colonized almost the entire IP. Coalescent modeling additionally highlighted a homogenous connectivity (Nm ~ 10 per generation) throughout the range, and isolation by distance model suggested the absence of barriers to dispersal despite the affinity of C. amblyrhynchos to coral reefs. This coincides with long-distance swims previously recorded, suggesting that the strong genetic structure at the IP scale (F ST ~ 0.56 between its ends) is the consequence of its broad current distribution and organization in a large number of demes. Our results strongly suggest that management plans for the gray reef shark should be designed on a range-wide rather than a local scale due to its continuous genetic structure. We further contrasted these results with those obtained previously for the sympatric but strictly lagoon-associated Carcharhinus melanopterus, known for its restricted dispersal ability. Carcharhinus melanopterus exhibits a similar RE dynamic but is characterized by a stronger genetic structure and a nonhomogeneous connectivity largely dependent on local coral reefs availability. This sheds new light on shark evolution, emphasizing the roles of IAA as source of biodiversity and of life-history traits in shaping the extent of genetic structure and diversity.

10.
Ecol Evol ; 13(2): e9837, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36844667

RESUMEN

The Bull Shark (Carcharhinus leucas) faces varying levels of exploitation around the world due to its coastal distribution. Information regarding population connectivity is crucial to evaluate its conservation status and local fishing impacts. In this study, we sampled 922 putative Bull Sharks from 19 locations in the first global assessment of population structure of this cosmopolitan species. Using a recently developed DNA-capture approach (DArTcap), samples were genotyped for 3400 nuclear markers. Additionally, full mitochondrial genomes of 384 Indo-Pacific samples were sequenced. Reproductive isolation was found between and across ocean basins (eastern Pacific, western Atlantic, eastern Atlantic, Indo-West Pacific) with distinct island populations in Japan and Fiji. Bull Sharks appear to maintain gene flow using shallow coastal waters as dispersal corridors, whereas large oceanic distances and historical land-bridges act as barriers. Females tend to return to the same area for reproduction, making them more susceptible to local threats and an important focus for management actions. Given these behaviors, the exploitation of Bull Sharks from insular populations, such as Japan and Fiji, may instigate local decline that cannot readily be replenished by immigration, which can in turn affect ecosystem dynamics and functions. These data also supported the development of a genetic panel to ascertain the population of origin, which will be useful in monitoring the trade of fisheries products and assessing population-level impacts of this harvest.

11.
Mol Ecol Resour ; 22(2): 554-566, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34407294

RESUMEN

Dispersal abilities play a crucial role in shaping the extent of population genetic structure, with more mobile species being panmictic over large geographical ranges and less mobile ones organized in metapopulations exchanging migrants to different degrees. In turn, population structure directly influences the coalescence pattern of the sampled lineages, but the consequences on the estimated variation of the effective population size (Ne ) over time obtained by means of unstructured demographic models remain poorly understood. However, this knowledge is crucial for biologically interpreting the observed Ne trajectory and further devising conservation strategies in endangered species. Here we investigated the demographic history of four shark species (Carharhinus melanopterus, Carharhinus limbatus, Carharhinus amblyrhynchos, Galeocerdo cuvier) with different degrees of endangered status and life history traits related to dispersal distributed in the Indo-Pacific and sampled off New Caledonia. We compared several evolutionary scenarios representing both structured (metapopulation) and unstructured models and then inferred the Ne variation through time. By performing extensive coalescent simulations, we provided a general framework relating the underlying population structure and the observed Ne dynamics. On this basis, we concluded that the recent decline observed in three out of the four considered species when assuming unstructured demographic models can be explained by the presence of population structure. Furthermore, we also demonstrated the limits of the inferences based on the sole site frequency spectrum and warn that statistics based on linkage disequilibrium will be needed to exclude recent demographic events affecting meta-populations.


Asunto(s)
Rasgos de la Historia de Vida , Tiburones , Animales , Geografía , Densidad de Población , Tiburones/genética
12.
BMC Ecol Evol ; 22(1): 147, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36526977

RESUMEN

BACKGROUND: The tiger shark (Galeocerdo cuvier) is a large iconic marine predator inhabiting worldwide tropical and subtropical waters. So far, only mitochondrial markers and microsatellites studies have investigated its worldwide historical demography with inconclusive outcomes. Here, we assessed for the first time the genomic variability of tiger shark based on RAD-seq data for 50 individuals from five sampling sites in the Indo-Pacific (IP) and one in the Atlantic Ocean (AO) to decipher the extent of the species' global connectivity and its demographic history. RESULTS: Clustering algorithms (PCA and NMF), FST and an approximate Bayesian computation framework revealed the presence of two clusters corresponding to the two oceanic basins. By modelling the two-dimensional site frequency spectrum, we tested alternative isolation/migration scenarios between these two identified populations. We found the highest support for a divergence time between the two ocean basins of ~ 193,000 years before present (B.P) and an ongoing but limited asymmetric migration ~ 176 times larger from the IP to the AO (Nm ~ 3.9) than vice versa (Nm ~ 0.02). CONCLUSIONS: The two oceanic regions are isolated by a strong barrier to dispersal more permeable from the IP to the AO through the Agulhas leakage. We finally emphasized contrasting recent demographic histories for the two regions, with the IP characterized by a recent bottleneck around 2000 years B.P. and the AO by an expansion starting 6000 years B.P. The large differentiation between the two oceanic regions and the absence of population structure within each ocean basin highlight the need for two large management units and call for future conservation programs at the oceanic rather than local scale, particularly in the Indo-Pacific where the population is declining.


Asunto(s)
Tiburones , Animales , Teorema de Bayes , Tiburones/genética , Océano Atlántico , Repeticiones de Microsatélite/genética , Océanos y Mares
13.
BMC Evol Biol ; 11: 32, 2011 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-21281509

RESUMEN

BACKGROUND: Bos primigenius, the aurochs, is the wild ancestor of modern cattle breeds and was formerly widespread across Eurasia and northern Africa. After a progressive decline, the species became extinct in 1627. The origin of modern taurine breeds in Europe is debated. Archaeological and early genetic evidence point to a single Near Eastern origin and a subsequent spread during the diffusion of herding and farming. More recent genetic data are instead compatible with local domestication events or at least some level of local introgression from the aurochs. Here we present the analysis of the complete mitochondrial genome of a pre-Neolithic Italian aurochs. RESULTS: In this study, we applied a combined strategy employing both multiplex PCR amplifications and 454 pyrosequencing technology to sequence the complete mitochondrial genome of an 11,450-year-old aurochs specimen from Central Italy. Phylogenetic analysis of the aurochs mtDNA genome supports the conclusions from previous studies of short mtDNA fragments--namely that Italian aurochsen were genetically very similar to modern cattle breeds, but highly divergent from the North-Central European aurochsen. CONCLUSIONS: Complete mitochondrial genome sequences are now available for several modern cattle and two pre-Neolithic mtDNA genomes from very different geographic areas. These data suggest that previously identified sub-groups within the widespread modern cattle mitochondrial T clade are polyphyletic, and they support the hypothesis that modern European breeds have multiple geographic origins.


Asunto(s)
Bovinos/genética , Genoma Mitocondrial , Paleontología , Animales , Bovinos/clasificación , ADN Mitocondrial/genética , Evolución Molecular , Italia , Datos de Secuencia Molecular , Filogenia
14.
Mol Biol Evol ; 27(4): 875-86, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19955482

RESUMEN

The ancient inhabitants of a region are often regarded as ancestral, and hence genetically related, to the modern dwellers (for instance, in studies of admixture), but so far, this assumption has not been tested empirically using ancient DNA data. We studied mitochondrial DNA (mtDNA) variation in Sardinia, across a time span of 2,500 years, comparing 23 Bronze-Age (nuragic) mtDNA sequences with those of 254 modern individuals from two regions, Ogliastra (a likely genetic isolate) and Gallura, and considering the possible impact of gene flow from mainland Italy. To understand the genealogical relationships between past and present populations, we developed seven explicit demographic models; we tested whether these models can account for the levels and patterns of genetic diversity in the data and which one does it best. Extensive simulation based on a serial coalescent algorithm allowed us to compare the posterior probability of each model and estimate the relevant evolutionary (mutation and migration rates) and demographic (effective population sizes, times since population splits) parameters, by approximate Bayesian computations. We then validated the analyses by investigating how well parameters estimated from the simulated data can reproduce the observed data set. We show that a direct genealogical continuity between Bronze-Age Sardinians and the current people of Ogliastra, but not Gallura, has a much higher probability than any alternative scenarios and that genetic diversity in Gallura evolved largely independently, owing in part to gene flow from the mainland.


Asunto(s)
ADN Mitocondrial/genética , Genealogía y Heráldica , Emigración e Inmigración , Flujo Génico , Humanos , Italia , Densidad de Población
15.
BMC Evol Biol ; 10: 83, 2010 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-20346116

RESUMEN

BACKGROUND: The aurochs (Bos primigenius) was a large bovine that ranged over almost the entirety of the Eurasian continent and North Africa. It is the wild ancestor of the modern cattle (Bos taurus), and went extinct in 1627 probably as a consequence of human hunting and the progressive reduction of its habitat. To investigate in detail the genetic history of this species and to compare the population dynamics in different European areas, we analysed Bos primigenius remains from various sites across Italy. RESULTS: Fourteen samples provided ancient DNA fragments from the mitochondrial hypervariable region. Our data, jointly analysed with previously published sequences, support the view that Italian aurochsen were genetically similar to modern bovine breeds, but very different from northern/central European aurochsen. Bayesian analyses and coalescent simulations indicate that the genetic variation pattern in both Italian and northern/central European aurochsen is compatible with demographic stability after the last glaciation. We provide evidence that signatures of population expansion can erroneously arise in stable aurochsen populations when the different ages of the samples are not taken into account. CONCLUSIONS: Distinct groups of aurochsen probably inhabited Italy and northern/central Europe after the last glaciation, respectively. On the contrary, Italian and Fertile Crescent aurochsen likely shared several mtDNA sequences, now common in modern breeds. We argue that a certain level of genetic homogeneity characterized aurochs populations in Southern Europe and the Middle East, and also that post-glacial recolonization of northern and central Europe advanced, without major demographic expansions, from eastern, and not southern, refugia.


Asunto(s)
Extinción Biológica , Genética de Población , Rumiantes/genética , Animales , Teorema de Bayes , ADN Mitocondrial/genética , Geografía , Haplotipos , Italia , Filogenia , Dinámica Poblacional , Análisis de Secuencia de ADN
16.
Mol Biol Evol ; 26(8): 1865-77, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19414523

RESUMEN

Eastern Indonesia possesses more linguistic diversity than any other region in Southeast Asia, with both Austronesian (AN) languages that are of East Asian origin, as well as non-Austronesian (NAN) languages of likely Melanesian origin. Here, we investigated the genetic history of human populations from seven eastern Indonesian islands, including AN and NAN speakers, as well as the relationship between languages and genes, by means of nonrecombining Y-chromosomal (NRY) and mitochondrial DNA (mtDNA) analysis. We found that the eastern Indonesian gene pool consists of East Asian as well as Melanesian components, as might be expected based on linguistic evidence, but also harbors putative indigenous eastern Indonesian signatures that perhaps reflect the initial occupation of the Wallacea by aboriginal hunter-gatherers already in Palaeolithic times. Furthermore, both NRY and mtDNA data showed a complete lack of correlation between linguistic and genetic relationships, most likely reflecting genetic admixture and/or language shift. In addition, we noted a small fraction of the NRY and mtDNA data shared between eastern Indonesians and Australian Aborigines likely reflecting an ancient link between Asia and Australia. Our data thus provide insights into the complex genetic ancestry history of eastern Indonesian islanders characterized by several admixture episodes and demonstrate a clear example of the lack of the often-assumed correlation between the genes and languages of human populations.


Asunto(s)
Pueblo Asiatico/genética , Cromosomas Humanos Y/genética , ADN Mitocondrial/genética , Genética de Población , Humanos , Indonesia , Lenguaje
17.
Pharmacogenet Genomics ; 20(8): 485-99, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20520586

RESUMEN

OBJECTIVE: The transition from food collection to food production (FP) modified the nature of selective pressures, and several studies illustrate that genetic adaptation to new lifestyle has occurred in humans since the agricultural revolution. Here we test the hypothesis that high levels of genetic variation at CYP2D6, a locus coding for a detoxifying enzyme of the cytochrome P450 complex, reflect this change. METHODS: We compared DNA sequences and predicted the levels of enzyme activity across 10 African, Asian and European populations, six of which currently rely on hunting and gathering (HG) while four on food production (FP). RESULTS AND CONCLUSION: HG and FP showed similar levels of CYP2D6 diversity, but displayed different substitution patterns at coding DNA sites possibly related to selective differences. Comparison with variation at presumably neutral independent loci confirmed this finding, despite the confounding effects of population history, resulting in higher overall variation in Africans than in Eurasians. The differences between HG and FP populations suggest that new lifestyle and dietary habits acquired in the transition to agriculture affected the variation pattern at CYP2D6, leading to an increase in FP populations of the frequency of alleles that are associated with a slower rate of metabolism. These alleles reached a balanced co-existence with other important and previously selected variants. We suggest that the pronounced substrate-dependent activity of most of these enzymes expanded the spectrum of the metabolic response.


Asunto(s)
Citocromo P-450 CYP2D6/genética , Ambiente , Evolución Molecular , Sitios Genéticos/genética , Variación Genética , Genética de Población , Inactivación Metabólica/genética , Población Negra/genética , ADN Mitocondrial/genética , Geografía , Haplotipos/genética , Humanos , Fenotipo , Filogenia , Especificidad de la Especie , Población Blanca/genética
18.
Mol Ecol Resour ; 20(6): 1470-1485, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32492756

RESUMEN

With recent advances in sequencing technology, genomic data are changing how important conservation management decisions are made. Applications such as Close-Kin Mark-Recapture demand large amounts of data to estimate population size and structure, and their full potential can only be realised through ongoing improvements in genotyping strategies. Here we introduce DArTcap, a cost-efficient method that combines DArTseq and sequence capture, and illustrate its use in a high resolution population analysis of Glyphis garricki, a rare, poorly known and threatened euryhaline shark. Clustering analyses and spatial distribution of kin pairs from four different regions across northern Australia and one in Papua New Guinea, representing its entire known range, revealed that each region hosts at least one distinct population. Further structuring is likely within Van Diemen Gulf, the region that included the most rivers sampled, suggesting additional population structuring would be found if other rivers were sampled. Coalescent analyses and spatially explicit modelling suggest that G. garricki experienced a recent range expansion during the opening of the Gulf of Carpentaria following the conclusion of the Last Glacial Maximum. The low migration rates between neighbouring populations of a species that is found only in restricted coastal and riverine habitats show the importance of managing each population separately, including careful monitoring of local and remote anthropogenic activities that may affect their environments. Overall we demonstrated how a carefully chosen SNP panel combined with DArTcap can provide highly accurate kinship inference and also support population structure and historical demography analyses, therefore maximising cost-effectiveness.


Asunto(s)
Genética de Población , Tiburones , Animales , Australia , Genotipo , Papúa Nueva Guinea , Dinámica Poblacional , Ríos , Tiburones/genética
19.
Mol Biol Evol ; 25(7): 1362-74, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18390477

RESUMEN

The genetic ancestry of Polynesians can be traced to both Asia and Melanesia, which presumably reflects admixture occurring between incoming Austronesians and resident non-Austronesians in Melanesia before the subsequent occupation of the greater Pacific; however, the genetic impact of the Austronesian expansion to Melanesia remains largely unknown. We therefore studied the diversity of nonrecombining Y chromosomal (NRY) and mitochondrial (mt) DNA in the Admiralty Islands, located north of mainland Papua New Guinea, and updated our previous data from Asia, Melanesia, and Polynesia with new NRY markers. The Admiralties are occupied today solely by Austronesian-speaking groups, but their human settlement history goes back 20,000 years prior to the arrival of Austronesians about 3,400 years ago. On the Admiralties, we found substantial mtDNA and NRY variation of both Austronesian and non-Austronesian origins, with higher frequencies of Asian mtDNA and Melanesian NRY haplogroups, similar to previous findings in Polynesia and perhaps as a consequence of Austronesian matrilocality. Thus, the Austronesian language replacement on the Admiralties (and elsewhere in Island Melanesia and coastal New Guinea) was accompanied by an incomplete genetic replacement that is more associated with mtDNA than with NRY diversity. These results provide further support for the "Slow Boat" model of Polynesian origins, according to which Polynesian ancestors originated from East Asia but genetically mixed with Melanesians before colonizing the Pacific. We also observed that non-Austronesian groups of coastal New Guinea and Island Melanesia had significantly higher frequencies of Asian mtDNA haplogroups than of Asian NRY haplogroups, suggesting sex-biased admixture perhaps as a consequence of non-Austronesian patrilocality. We additionally found that the predominant NRY haplogroup of Asian origin in the Admiralties (O-M110) likely originated in Taiwan, thus providing the first direct Y chromosome evidence for a Taiwanese origin of the Austronesian expansion. Furthermore, we identified a NRY haplogroup (K-P79, also found on the Admiralties) in Polynesians that most likely arose in the Bismarck Archipelago, providing the first direct link between northern Island Melanesia and Polynesia. These results significantly advance our understanding of the impact of the Austronesian expansion and human history in the Pacific region.


Asunto(s)
Pueblo Asiatico/genética , Cromosomas Humanos Y/genética , ADN Mitocondrial/genética , Variación Genética , Genética de Población , Geografía , Nativos de Hawái y Otras Islas del Pacífico/genética , Frecuencia de los Genes , Haplotipos , Humanos , Lenguaje , Melanesia
20.
J Hered ; 100(6): 691-708, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19617524

RESUMEN

The chamois is a useful species with which to investigate the combined genetic impact of habitat fragmentation, over hunting, and translocations. Genetic variation within and between chamois (genus Rupicapra) populations was analyzed in 259 individuals from 16 sampling sites located in Italy, Spain, Slovakia, and the Czech Republic. Two mitochondrial DNA markers (control region and cytochrome b) and 11 nuclear microsatellites were typed. The principal results of this study can be summarized as follows: 1) high and significant differentiation between almost all chamois populations is observed even on a microgeographical scale, probably caused by the patchy distribution of this species, sharp geographical barriers to gene flow, and drift effects related to recent bottlenecks; 2) historical translocation events have left a clear genetic signature, including interspecific hybridization in some Alpine localities; 3) the Apennine subspecies of chamois, Rupicapra pyrenaica ornata, shows a high and similar level of divergence (about 1.5 My) from the Pyrenean (Rupicapra pyrenaica pyrenaica) and the Alpine (Rupicapra rupicapra) chamois; therefore, the specific status of these taxa should be revised. These results confirm the potential of population genetic analyses to dissect and interpret complex patterns of diversity in order to define factors important to conservation and management.


Asunto(s)
Ecosistema , Evolución Molecular , Flujo Génico/genética , Variación Genética , Genética de Población , Filogenia , Rupicapra/genética , Animales , Secuencia de Bases , Teorema de Bayes , Biología Computacional , Conservación de los Recursos Naturales/métodos , ADN Mitocondrial/genética , Demografía , Europa (Continente) , Geografía , Funciones de Verosimilitud , Repeticiones de Microsatélite/genética , Modelos Genéticos , Datos de Secuencia Molecular , Rupicapra/clasificación , Análisis de Secuencia de ADN , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA