Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 26(13): 2377-2385, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28379354

RESUMEN

Spinal muscular atrophy (SMA) is a common and often fatal neuromuscular disorder caused by low levels of the Survival Motor Neuron (SMN) protein. Amongst the earliest detectable consequences of SMN deficiency are profound defects of the neuromuscular junctions (NMJs). In model mice these synapses appear disorganized, fail to mature and are characterized by poorly arborized nerve terminals. Given one role of the SMN protein in orchestrating the assembly of spliceosomal snRNP particles and subsequently regulating the alternative splicing of pre-mRNAs, a plausible link between SMN function and the distal neuromuscular SMA phenotype is an incorrectly spliced transcript or transcripts involved in establishing or maintaining NMJ structure. In this study, we explore the effects of one such transcript-Z+Agrin-known to be a critical organizer of the NMJ. We confirm that low SMN protein reduces motor neuronal levels of Z+Agrin. Repletion of this isoform of Agrin in the motor neurons of SMA model mice increases muscle fiber size, enhances the post-synaptic NMJ area, reduces the abnormal accumulation of intermediate filaments in nerve terminals of the neuromuscular synapse and improves the innervation of muscles. While these effects are independent of changes in SMN levels or increases in motor neuron numbers they nevertheless have a significant effect on the overall disease phenotype, enhancing mean survival in severely affected SMA model mice by ∼40%. We conclude that Agrin is an important target of the SMN protein and that mitigating NMJ defects may be one strategy in treating human spinal muscular atrophy.


Asunto(s)
Agrina/genética , Unión Neuromuscular/metabolismo , Agrina/metabolismo , Empalme Alternativo , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular Espinal/genética , Proteínas del Tejido Nervioso/genética , Enfermedades Neuromusculares/genética , Enfermedades Neuromusculares/metabolismo , Unión Neuromuscular/genética , Isoformas de Proteínas/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Sinapsis/metabolismo
2.
Hum Mol Genet ; 26(22): 4406-4415, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28973165

RESUMEN

Homozygous mutations in the aromatic l-amino acid decarboxylase (AADC) gene result in a severe depletion of its namesake protein, triggering a debilitating and often fatal form of infantile Parkinsonism known as AADC deficiency. AADC deficient patients fail to produce normal levels of the monoamine neurotransmitters dopamine and serotonin, and suffer a multi-systemic disorder characterized by movement abnormalities, developmental delay and autonomic dysfunction; an absolute loss of dopamine is generally considered incompatible with life. There is no optimal treatment for AADC deficiency and few truly good models in which to investigate disease mechanisms or develop and refine therapeutic strategies. In this study, we introduced a relatively frequently reported but mildly pathogenic S250F missense mutation into the murine Aadc gene. We show that mutants homozygous for the mutation are viable and express a stable but minimally active form of the AADC protein. Although the low enzymatic activity of the protein resulted in only modestly reduced concentrations of brain dopamine, serotonin levels were markedly diminished, and this perturbed behavior as well as autonomic function in mutant mice. Still, we found no evidence of morphologic abnormalities of the dopaminergic cells in mutant brains. The striatum as well as substantia nigra appeared normal and no loss of dopamine expressing cells in the latter was detected. We conclude that even minute levels of active AADC are sufficient to allow for substantial amounts of dopamine to be produced in model mice harboring the S250F mutation. Such mutants represent a novel, mild model of human AADC deficiency.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/genética , Descarboxilasas de Aminoácido-L-Aromático/deficiencia , Mutación Missense , Errores Innatos del Metabolismo de los Aminoácidos/enzimología , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/terapia , Animales , Descarboxilasas de Aminoácido-L-Aromático/genética , Descarboxilasas de Aminoácido-L-Aromático/metabolismo , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Dopamina/metabolismo , Femenino , Terapia Genética , Humanos , Levodopa/metabolismo , Masculino , Ratones , Neostriado/metabolismo , Enfermedad de Parkinson/enzimología , Enfermedad de Parkinson/genética , Polimorfismo de Nucleótido Simple , Serotonina/metabolismo , Sustancia Negra/metabolismo
3.
Hum Mol Genet ; 23(23): 6318-31, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25055867

RESUMEN

Reduced expression of SMN protein causes spinal muscular atrophy (SMA), a neurodegenerative disorder leading to motor neuron dysfunction and loss. However, the molecular mechanisms by which SMN regulates neuronal dysfunction are not fully understood. Here, we report that reduced SMN protein level alters miRNA expression and distribution in neurons. In particular, miR-183 levels are increased in neurites of SMN-deficient neurons. We demonstrate that miR-183 regulates translation of mTor via direct binding to its 3' UTR. Interestingly, local axonal translation of mTor is reduced in SMN-deficient neurons, and this can be recovered by miR-183 inhibition. Finally, inhibition of miR-183 expression in the spinal cord of an SMA mouse model prolongs survival and improves motor function of Smn-mutant mice. Together, these observations suggest that axonal miRNAs and the mTOR pathway are previously unidentified molecular mechanisms contributing to SMA pathology.


Asunto(s)
Axones/metabolismo , MicroARNs/metabolismo , Biosíntesis de Proteínas , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Serina-Treonina Quinasas TOR/biosíntesis , Regiones no Traducidas 3' , Animales , MicroARNs/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Neuronas/metabolismo , Cultivo Primario de Células , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Serina-Treonina Quinasas TOR/genética
4.
Hum Mol Genet ; 21(15): 3421-34, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22581780

RESUMEN

Spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS) are among the most common motor neuron diseases to afflict the human population. A deficiency of the survival of motor neuron (SMN) protein causes SMA and is also reported to be an exacerbating factor in the development of ALS. However, pathways linking the two diseases have yet to be defined and it is not clear precisely how the pathology of ALS is aggravated by reduced SMN or whether mutant proteins underlying familial forms of ALS interfere with SMN-related biochemical pathways to exacerbate the neurodegenerative process. In this study, we show that mutant superoxide dismutase-1 (SOD1), a cause of familial ALS, profoundly alters the sub-cellular localization of the SMN protein, preventing the formation of nuclear 'gems' by disrupting the recruitment of the protein to Cajal bodies. Overexpressing the SMN protein in mutant SOD1 mice, a model of familial ALS, alleviates this phenomenon, most likely in a cell-autonomous manner, and significantly mitigates the loss of motor neurons in the spinal cord and in culture dishes. In the mice, the onset of the neuromuscular phenotype is delayed and motor function enhanced, suggestive of a therapeutic benefit for ALS patients treated with agents that augment the SMN protein. Nevertheless, this finding is tempered by an inability to prolong survival, a limitation most likely imposed by the inexorable denervation that characterizes ALS and eventually disrupts the neuromuscular synapses even in the presence of increased SMN.


Asunto(s)
Esclerosis Amiotrófica Lateral/enzimología , Núcleo Celular/metabolismo , Atrofia Muscular Espinal/enzimología , Atrofia Muscular Espinal/genética , Mutación , Superóxido Dismutasa/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Ratones Transgénicos , Atrofia Muscular Espinal/metabolismo , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Proteína 1 para la Supervivencia de la Neurona Motora/genética
5.
JCI Insight ; 8(18)2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737261

RESUMEN

Spinal muscular atrophy (SMA) is a pediatric-onset neuromuscular disorder caused by insufficient survival motor neuron (SMN) protein. SMN restorative therapies are now approved for the treatment of SMA; however, they are not curative, likely due to a combination of imperfect treatment timing, inadequate SMN augmentation, and failure to optimally target relevant organs. Here, we consider the implications of imperfect treatment administration, focusing specifically on outcomes for skeletal muscle. We examine the evidence that muscle plays a contributing role in driving neuromuscular dysfunction in SMA. Next, we discuss how SMN might regulate the health of myofibers and their progenitors. Finally, we speculate on therapeutic outcomes of failing to raise muscle SMN to healthful levels and present strategies to restore function to this tissue to ensure better treatment results.


Asunto(s)
Atrofia Muscular Espinal , Enfermedades Neuromusculares , Niño , Humanos , Atrofia Muscular Espinal/genética , Músculo Esquelético , Fenotipo , Factores de Transcripción
6.
Neuron ; 111(9): 1423-1439.e4, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-36863345

RESUMEN

Reduced survival motor neuron (SMN) protein triggers the motor neuron disease, spinal muscular atrophy (SMA). Restoring SMN prevents disease, but it is not known how neuromuscular function is preserved. We used model mice to map and identify an Hspa8G470R synaptic chaperone variant, which suppressed SMA. Expression of the variant in the severely affected mutant mice increased lifespan >10-fold, improved motor performance, and mitigated neuromuscular pathology. Mechanistically, Hspa8G470R altered SMN2 splicing and simultaneously stimulated formation of a tripartite chaperone complex, critical for synaptic homeostasis, by augmenting its interaction with other complex members. Concomitantly, synaptic vesicular SNARE complex formation, which relies on chaperone activity for sustained neuromuscular synaptic transmission, was found perturbed in SMA mice and patient-derived motor neurons and was restored in modified mutants. Identification of the Hspa8G470R SMA modifier implicates SMN in SNARE complex assembly and casts new light on how deficiency of the ubiquitous protein causes motor neuron disease.


Asunto(s)
Atrofia Muscular Espinal , Animales , Ratones , Modelos Animales de Enfermedad , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica , Factores de Transcripción/metabolismo
7.
J Neurosci ; 30(36): 12005-19, 2010 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-20826664

RESUMEN

Spinal muscular atrophy (SMA) is a common (approximately 1:6400) autosomal recessive neuromuscular disorder caused by a paucity of the survival of motor neuron (SMN) protein. Although widely recognized to cause selective spinal motor neuron loss when deficient, the precise cellular site of action of the SMN protein in SMA remains unclear. In this study we sought to determine the consequences of selectively depleting SMN in the motor neurons of model mice. Depleting but not abolishing the protein in motor neuronal progenitors causes an SMA-like phenotype. Neuromuscular weakness in the model mice is accompanied by peripheral as well as central synaptic defects, electrophysiological abnormalities of the neuromuscular junctions, muscle atrophy, and motor neuron degeneration. However, the disease phenotype is more modest than that observed in mice expressing ubiquitously low levels of the SMN protein, and both symptoms as well as early electrophysiological abnormalities that are readily apparent in neonates were attenuated in an age-dependent manner. We conclude that selective knock-down of SMN in motor neurons is sufficient but may not be necessary to cause a disease phenotype and that targeting these cells will be a requirement of any effective therapeutic strategy. This realization is tempered by the relatively mild SMA phenotype in our model mice, one explanation for which is the presence of normal SMN levels in non-neuronal tissue that serves to modulate disease severity.


Asunto(s)
Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Células Madre/metabolismo , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Conducta Animal , Recuento de Células/métodos , Colina O-Acetiltransferasa/metabolismo , Modelos Animales de Enfermedad , Electromiografía/métodos , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Contracción Isométrica/fisiología , Estimación de Kaplan-Meier , Proteínas Luminiscentes/genética , Potenciales de la Membrana/genética , Ratones , Ratones Transgénicos , Potenciales Postsinápticos Miniatura/genética , Actividad Motora/genética , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/mortalidad , Mutación/genética , Degeneración Nerviosa/genética , Proteínas del Tejido Nervioso/metabolismo , Unión Neuromuscular/patología , Factor de Transcripción 2 de los Oligodendrocitos , Técnicas de Placa-Clamp , Receptores Colinérgicos/metabolismo , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo , Sinapsis/patología , Sinapsis/fisiología , Transmisión Sináptica/genética
8.
Neurosci Insights ; 16: 26331055211011507, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34589708

RESUMEN

Considering its small size relative to the rest of the body, the mammalian brain has a disproportionately high energy requirement. This energy is supplied to the brain mainly in the form of glucose through the principal cerebral glucose transporter, Glut1. Inactivation of even a single copy of the Glut1 gene, SLC2A1, has dire consequences for the brain, starving cerebral neurons of energy and triggering the debilitating neurodevelopmental disorder, Glut1 deficiency syndrome (Glut1 DS). Considering the monogenic nature of Glut1 DS, the disease serves as an excellent paradigm to study the larger family of brain energy failure syndromes. Here we review how studies of Glut1 DS are proving instructive to the brain's energy needs, focusing first on the requirements, both spatial and temporal of the transporter, second, on proposed mechanisms linking low Glut1 to brain dysfunction and, finally on efforts to treat the disease and thus restore nutritional support to the brain. These studies promise not only to inform mechanisms and treatments for the relatively rare Glut1 DS but also the myriad other conditions involving the Glut1 protein.

9.
Neural Regen Res ; 16(10): 1978-1984, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33642371

RESUMEN

Infantile-onset spinal muscular atrophy is the quintessential example of a disorder characterized by a predominantly neurodegenerative phenotype that nevertheless stems from perturbations in a housekeeping protein. Resulting from low levels of the Survival of Motor Neuron (SMN) protein, spinal muscular atrophy manifests mainly as a lower motor neuron disease. Why this is so and whether other cell types contribute to the classic spinal muscular atrophy phenotype continue to be the subject of intense investigation and are only now gaining appreciation. Yet, what is emerging is sometimes as puzzling as it is instructive, arguing for a careful re-examination of recent study outcomes, raising questions about established dogma in the field and making the case for a greater focus on milder spinal muscular atrophy models as tools to identify key mechanisms driving selective neuromuscular dysfunction in the disease. This review examines the evidence for novel molecular and cellular mechanisms that have recently been implicated in spinal muscular atrophy, highlights breakthroughs, points out caveats and poses questions that ought to serve as the basis of new investigations to better understand and treat this and other more common neurodegenerative disorders.

10.
Ann Clin Transl Neurol ; 8(5): 1086-1095, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33788421

RESUMEN

OBJECTIVE: To estimate muscle oxygen uptake and quantify fatigue during exercise in ambulatory individuals with spinal muscular atrophy (SMA) and healthy controls. METHODS: Peak aerobic capacity (VO2peak ) and workload (Wpeak ) were measured by cardiopulmonary exercise test (CPET) in 19 ambulatory SMA patients and 16 healthy controls. Submaximal exercise (SME) at 40% Wpeak was performed for 10 minutes. Change in vastus lateralis deoxygenated hemoglobin, measured by near-infrared spectroscopy, determined muscle oxygen uptake (ΔHHb) at rest and during CPET and SME. Dual energy X-ray absorptiometry assessed fat-free mass (FFM%). Fatigue was determined by percent change in workload or distance in the first compared to the last minute of SME (FatigueSME ) and six-minute walk test (Fatigue6MWT ), respectively. RESULTS: ΔHHb-PEAK, ΔHHb-SME, VO2peak , Wpeak , FFM%, and 6MWT distance were lower (P < 0.001), and Fatigue6MWT and FatigueSME were higher (P < 0.001) in SMA compared to controls. ΔHHb-PEAK correlated with FFM% (r = 0.50) and VO2peak (r = 0.41) only in controls. Only in SMA, Fatigue6MWT was inversely correlated with Wpeak (r = -0.69), and FatigueSME was inversely correlated with FFM% (r = -0.55) and VO2peak (r = -0.69). INTERPRETATION: This study provides further support for muscle mitochondrial dysfunction in SMA patients. During exercise, we observed diminished muscle oxygen uptake but no correlation with aerobic capacity or body composition. We also observed increased fatigue which correlated with decreased aerobic capacity, workload, and body composition. Understanding the mechanisms underlying diminished muscle oxygen uptake and increased fatigue during exercise in SMA may identify additional therapeutic targets that rescue symptomatic patients and mitigate their residual disease burden.


Asunto(s)
Ejercicio Físico/fisiología , Fatiga/metabolismo , Miopatías Mitocondriales/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular Espinal/metabolismo , Consumo de Oxígeno/fisiología , Absorciometría de Fotón , Adolescente , Adulto , Niño , Prueba de Esfuerzo , Fatiga/etiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Miopatías Mitocondriales/complicaciones , Músculo Esquelético/diagnóstico por imagen , Atrofia Muscular Espinal/complicaciones , Espectroscopía Infrarroja Corta , Adulto Joven
11.
JCI Insight ; 6(3)2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33351789

RESUMEN

Paucity of the glucose transporter-1 (Glut1) protein resulting from haploinsufficiency of the SLC2A1 gene arrests cerebral angiogenesis and disrupts brain function to cause Glut1 deficiency syndrome (Glut1 DS). Restoring Glut1 to Glut1 DS model mice prevents disease, but the precise cellular sites of action of the transporter, its temporal requirements, and the mechanisms linking scarcity of the protein to brain cell dysfunction remain poorly understood. Here, we show that Glut1 functions in a cell-autonomous manner in the cerebral microvasculature to affect endothelial tip cells and, thus, brain angiogenesis. Moreover, brain endothelial cell-specific Glut1 depletion not only triggers a severe neuroinflammatory response in the Glut1 DS brain, but also reduces levels of brain-derived neurotrophic factor (BDNF) and causes overt disease. Reduced BDNF correlated with fewer neurons in the Glut1 DS brain. Controlled depletion of the protein demonstrated that brain pathology and disease severity was greatest when Glut1 scarcity was induced neonatally, during brain angiogenesis. Reducing Glut1 at later stages had mild or little effect. Our results suggest that targeting brain endothelial cells during early development is important to ensure proper brain angiogenesis, prevent neuroinflammation, maintain BDNF levels, and preserve neuron numbers. This requirement will be essential for any disease-modifying therapeutic strategy for Glut1 DS.


Asunto(s)
Errores Innatos del Metabolismo de los Carbohidratos/metabolismo , Transportador de Glucosa de Tipo 1/deficiencia , Transportador de Glucosa de Tipo 1/metabolismo , Proteínas de Transporte de Monosacáridos/deficiencia , Animales , Animales Recién Nacidos , Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Encéfalo/patología , Factor Neurotrófico Derivado del Encéfalo/deficiencia , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Errores Innatos del Metabolismo de los Carbohidratos/genética , Errores Innatos del Metabolismo de los Carbohidratos/patología , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/patología , Femenino , Técnicas de Silenciamiento del Gen , Transportador de Glucosa de Tipo 1/genética , Haploinsuficiencia , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Neovascularización Fisiológica/genética , Neuronas/metabolismo , Neuronas/patología , Fenotipo
12.
Hum Mol Genet ; 17(16): 2552-69, 2008 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-18492800

RESUMEN

Spinal muscular atrophy (SMA) is a common pediatric neuromuscular disorder caused by insufficient levels of the survival of motor neuron (SMN) protein. Studies involving SMA patients and animal models expressing the human SMN2 gene have yielded relatively little information about the earliest cellular consequences of reduced SMN protein. In this study, we have used severe- and mild-SMN2 expressing mouse models of SMA as well as material from human patients to understand the initial stages of neurodegeneration in the human disease. We show that the earliest structural defects appear distally and involve the neuromuscular synapse. Insufficient SMN protein arrests the post-natal development of the neuromuscular junction (NMJ), impairing the maturation of acetylcholine receptor (AChR) clusters into 'pretzels'. Pre-synaptic defects include poor terminal arborization and intermediate filament aggregates which may serve as a useful biomarker of the disease. These defects are reflected in functional deficits at the NMJ characterized by intermittent neurotransmission failures. We suggest that SMA might best be described as a NMJ synaptopathy and that one promising means of treating it could involve maintaining function at the NMJ.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/fisiopatología , Proteínas del Tejido Nervioso/metabolismo , Unión Neuromuscular/metabolismo , Unión Neuromuscular/fisiopatología , Proteínas de Unión al ARN/metabolismo , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos , Ratones Noqueados , Ratones Transgénicos , Neuronas Motoras/química , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patología , Proteínas del Tejido Nervioso/genética , Unión Neuromuscular/genética , Unión Neuromuscular/patología , Proteínas de Unión al ARN/genética , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo , Proteínas del Complejo SMN , Proteína 2 para la Supervivencia de la Neurona Motora , Transmisión Sináptica
13.
Hum Mol Genet ; 17(8): 1063-75, 2008 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-18178576

RESUMEN

Spinal muscular atrophy (SMA) is caused by loss of the survival motor neuron gene (SMN1) and retention of the SMN2 gene. The copy number of SMN2 affects the amount of SMN protein produced and the severity of the SMA phenotype. While loss of mouse Smn is embryonic lethal, two copies of SMN2 prevents this embryonic lethality resulting in a mouse with severe SMA that dies 5 days after birth. Here we show that expression of full-length SMN under the prion promoter (PrP) rescues severe SMA mice. The PrP results in high levels of SMN in neurons at embryonic day 15. Mice homozygous for PrP-SMN with two copies of SMN2 and lacking mouse Smn survive for an average of 210 days and lumbar motor neuron root counts in these mice were normal. Expression of SMN solely in skeletal muscle using the human skeletal actin (HSA) promoter resulted in no improvement of the SMA phenotype or extension of survival. One HSA line displaying nerve expression of SMN did affect the SMA phenotype with mice living for an average of 160 days. Thus, we conclude that expression of full-length SMN in neurons can correct the severe SMA phenotype in mice. Furthermore, a small increase of SMN in neurons has a substantial impact on survival of SMA mice while high SMN levels in mature skeletal muscle alone has no impact.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Atrofia Muscular Espinal/genética , Proteínas del Tejido Nervioso/genética , Proteínas de Unión al ARN/genética , Animales , Embrión de Mamíferos/metabolismo , Dosificación de Gen , Expresión Génica , Humanos , Ratones , Ratones Transgénicos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular Espinal/patología , Atrofia Muscular Espinal/fisiopatología , Neuronas , Regiones Promotoras Genéticas , Proteínas del Complejo SMN , Análisis de Supervivencia , Proteína 1 para la Supervivencia de la Neurona Motora , Proteína 2 para la Supervivencia de la Neurona Motora
14.
Curr Neurol Neurosci Rep ; 10(2): 108-17, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20425235

RESUMEN

Spinal muscular atrophy (SMA) is a common and often fatal neurodegenerative disease that primarily afflicts infants and young children. SMA is caused by abnormally low levels of the survival motor neuron (SMN) protein resulting from a combination of recessively inherited mutations in the SMN1 gene and the presence of an almost identical but partially functional copy gene, SMN2. Absence of the uniquely human SMN2 gene in SMA patients has never been reported because the SMN protein is indispensable for cell survival. Modeling SMA in animals therefore poses a challenge. This review describes the different strategies used to overcome this hurdle and model SMA in mice. We highlight new and emerging insights regarding SMA gained by studying the mice and illustrate how the animals serve as important tools to understand and eventually treat the human disease.


Asunto(s)
Modelos Animales de Enfermedad , Atrofia Muscular Espinal , Proteínas del Complejo SMN/genética , Animales , Humanos , Ratones , Ratones Transgénicos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Complejo SMN/metabolismo
15.
J Clin Invest ; 130(3): 1271-1287, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-32039917

RESUMEN

Paucity of the survival motor neuron (SMN) protein triggers the oft-fatal infantile-onset motor neuron disorder, spinal muscular atrophy (SMA). Augmenting the protein is one means of treating SMA and recently led to FDA approval of an intrathecally delivered SMN-enhancing oligonucleotide currently in use. Notwithstanding the advent of this and other therapies for SMA, it is unclear whether the paralysis associated with the disease derives solely from dysfunctional motor neurons that may be efficiently targeted by restricted delivery of SMN-enhancing agents to the nervous system, or stems from broader defects of the motor unit, arguing for systemic SMN repletion. We investigated the disease-contributing effects of low SMN in one relevant peripheral organ - skeletal muscle - by selectively depleting the protein in only this tissue. We found that muscle deprived of SMN was profoundly damaged. Although a disease phenotype was not immediately obvious, persistent low levels of the protein eventually resulted in muscle fiber defects, neuromuscular junction abnormalities, compromised motor performance, and premature death. Importantly, restoring SMN after the onset of muscle pathology reversed disease. Our results provide the most compelling evidence yet for a direct contributing role of muscle in SMA and argue that an optimal therapy for the disease must be designed to treat this aspect of the dysfunctional motor unit.


Asunto(s)
Neuronas Motoras/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular Espinal/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Neuronas Motoras/patología , Músculo Esquelético/patología , Atrofia Muscular Espinal/tratamiento farmacológico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patología , Proteína 1 para la Supervivencia de la Neurona Motora/genética
16.
Epilepsia Open ; 5(3): 354-365, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32913944

RESUMEN

Glut1 deficiency syndrome (Glut1DS) is a brain energy failure syndrome caused by impaired glucose transport across brain tissue barriers. Glucose diffusion across tissue barriers is facilitated by a family of proteins including glucose transporter type 1 (Glut1). Patients are treated effectively with ketogenic diet therapies (KDT) that provide a supplemental fuel, namely ketone bodies, for brain energy metabolism. The increasing complexity of Glut1DS, since its original description in 1991, now demands an international consensus statement regarding diagnosis and treatment. International experts (n = 23) developed a consensus statement utilizing their collective professional experience, responses to a standardized questionnaire, and serial discussions of wide-ranging issues related to Glut1DS. Key clinical features signaling the onset of Glut1DS are eye-head movement abnormalities, seizures, neurodevelopmental impairment, deceleration of head growth, and movement disorders. Diagnosis is confirmed by the presence of these clinical signs, hypoglycorrhachia documented by lumbar puncture, and genetic analysis showing pathogenic SLC2A1 variants. KDT represent standard choices with Glut1DS-specific recommendations regarding duration, composition, and management. Ongoing research has identified future interventions to restore Glut1 protein content and function. Clinical manifestations are influenced by patient age, genetic complexity, and novel therapeutic interventions. All clinical phenotypes will benefit from a better understanding of Glut1DS natural history throughout the life cycle and from improved guidelines facilitating early diagnosis and prompt treatment. Often, the presenting seizures are treated initially with antiseizure drugs before the cause of the epilepsy is ascertained and appropriate KDT are initiated. Initial drug treatment fails to treat the underlying metabolic disturbance during early brain development, contributing to the long-term disease burden. Impaired development of the brain microvasculature is one such complication of delayed Glut1DS treatment in the postnatal period. This international consensus statement should facilitate prompt diagnosis and guide best standard of care for Glut1DS throughout the life cycle.

17.
Neuron ; 48(6): 885-96, 2005 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-16364894

RESUMEN

Spinal muscular atrophy (SMA) is a neurodegenerative disease in humans and the most common genetic cause of infant mortality. The disease results in motor neuron loss and skeletal muscle atrophy. Despite a range of disease phenotypes, SMA is caused by mutations in a single gene, the Survival of Motor Neuron 1 (SMN1) gene. Recent advances have shed light on functions of the protein product of this gene and the pathophysiology of the disease, yet, fundamental questions remain. This review attempts to highlight some of the recent advances made in the understanding of the disease and how loss of the ubiquitously expressed survival of motor neurons (SMN) protein results in the SMA phenotype. Answers to some of the questions raised may ultimately result in a viable treatment for SMA.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas de Unión al ARN/genética , Médula Espinal/metabolismo , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/deficiencia , Humanos , Patrón de Herencia/genética , Modelos Animales , Neuronas Motoras/patología , Atrofia Muscular Espinal/fisiopatología , Mutación/genética , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Proteínas del Tejido Nervioso/deficiencia , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Proteínas del Complejo SMN , Médula Espinal/patología , Médula Espinal/fisiopatología , Proteína 1 para la Supervivencia de la Neurona Motora
18.
J Cell Biol ; 162(5): 919-31, 2003 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-12952942

RESUMEN

Spinal muscular atrophy (SMA) is an autosomal recessive disorder characterized by a loss of alpha motoneurons in the spinal cord. SMA is caused by low levels of the ubiquitously expressed survival motor neuron (Smn) protein. As it is unclear how low levels of Smn specifically affect motoneurons, we have modeled SMA in zebrafish, a vertebrate model organism with well-characterized motoneuron development. Using antisense morpholinos to reduce Smn levels throughout the entire embryo, we found motor axon-specific pathfinding defects. Reduction of Smn in individual motoneurons revealed that smn is acting cell autonomously. These results show for the first time, in vivo, that Smn functions in motor axon development and suggest that these early developmental defects may lead to subsequent motoneuron loss.


Asunto(s)
Axones/metabolismo , Movimiento Celular/fisiología , Neuronas Motoras/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Pez Cebra/embriología , Animales , Muerte Celular/fisiología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Humanos , Hibridación in Situ , Neuronas Motoras/citología , Atrofia Muscular Espinal/metabolismo , Proteínas del Tejido Nervioso/genética , Unión Neuromuscular , Oligonucleótidos Antisentido/metabolismo , Proteínas de Unión al ARN , Receptores Colinérgicos/metabolismo , Proteínas del Complejo SMN , Proteína 1 para la Supervivencia de la Neurona Motora , Pez Cebra/anatomía & histología , Pez Cebra/fisiología
19.
J Cell Biol ; 163(4): 801-12, 2003 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-14623865

RESUMEN

Spinal muscular atrophy (SMA), a common autosomal recessive form of motoneuron disease in infants and young adults, is caused by mutations in the survival motoneuron 1 (SMN1) gene. The corresponding gene product is part of a multiprotein complex involved in the assembly of spliceosomal small nuclear ribonucleoprotein complexes. It is still not understood why reduced levels of the ubiquitously expressed SMN protein specifically cause motoneuron degeneration. Here, we show that motoneurons isolated from an SMA mouse model exhibit normal survival, but reduced axon growth. Overexpression of Smn or its binding partner, heterogeneous nuclear ribonucleoprotein (hnRNP) R, promotes neurite growth in differentiating PC12 cells. Reduced axon growth in Smn-deficient motoneurons correlates with reduced beta-actin protein and mRNA staining in distal axons and growth cones. We also show that hnRNP R associates with the 3' UTR of beta-actin mRNA. Together, these data suggest that a complex of Smn with its binding partner hnRNP R interacts with beta-actin mRNA and translocates to axons and growth cones of motoneurons.


Asunto(s)
Actinas/genética , Conos de Crecimiento/metabolismo , Neuronas Motoras/metabolismo , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/fisiología , Médula Espinal/crecimiento & desarrollo , Regiones no Traducidas 3'/genética , Animales , Axones/fisiología , Diferenciación Celular/genética , Supervivencia Celular/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Modelos Animales de Enfermedad , Conos de Crecimiento/ultraestructura , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Ratones , Ratones Transgénicos , Neuronas Motoras/citología , Proteínas del Tejido Nervioso/genética , Células PC12 , ARN Mensajero/metabolismo , Proteínas de Unión al ARN , Ratas , Proteínas del Complejo SMN , Médula Espinal/citología , Médula Espinal/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora
20.
J Cell Biol ; 160(1): 41-52, 2003 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-12515823

RESUMEN

5q spinal muscular atrophy (SMA) is a common autosomal recessive disorder in humans and the leading genetic cause of infantile death. Patients lack a functional survival of motor neurons (SMN1) gene, but carry one or more copies of the highly homologous SMN2 gene. A homozygous knockout of the single murine Smn gene is embryonic lethal. Here we report that in the absence of the SMN2 gene, a mutant SMN A2G transgene is unable to rescue the embryonic lethality. In its presence, the A2G transgene delays the onset of motor neuron loss, resulting in mice with mild SMA. We suggest that only in the presence of low levels of full-length SMN is the A2G transgene able to form partially functional higher order SMN complexes essential for its functions. Mild SMA mice exhibit motor neuron degeneration, muscle atrophy, and abnormal EMGs. Animals homozygous for the mutant transgene are less severely affected than heterozygotes. This demonstrates the importance of SMN levels in SMA even if the protein is expressed from a mutant allele. Our mild SMA mice will be useful in (a) determining the effect of missense mutations in vivo and in motor neurons and (b) testing potential therapies in SMA.


Asunto(s)
Atrofia Muscular Espinal/genética , Mutación Missense , Proteínas del Tejido Nervioso/genética , Transgenes , Animales , Axones/metabolismo , Southern Blotting , Western Blotting , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , ADN Complementario/metabolismo , Relación Dosis-Respuesta a Droga , Electromiografía , Electrofisiología , Genotipo , Glutatión Transferasa/metabolismo , Homocigoto , Inmunohistoquímica , Ratones , Ratones Noqueados , Ratones Transgénicos , Modelos Biológicos , Modelos Genéticos , Neuronas Motoras/patología , Músculos/citología , Músculos/metabolismo , Músculos/patología , Mutación , Fenotipo , Unión Proteica , Proteínas de Unión al ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas del Complejo SMN , Proteína 1 para la Supervivencia de la Neurona Motora , Proteína 2 para la Supervivencia de la Neurona Motora , Factores de Tiempo , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA