Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Inhal Toxicol ; 36(4): 261-274, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38836331

RESUMEN

OBJECTIVE: Our work is focused on tungsten, considered as an emerging contaminant. Its environmental dispersion is partly due to mining and military activities. Exposure scenario can also be occupational, in areas such as the hard metal industry and specific nuclear facilities. Our study investigated the cerebral effects induced by the inhalation of tungsten particles. METHODS: Inhalation exposure campaigns were carried out at two different concentrations (5 and 80 mg/m3) in single and repeated modes (4 consecutive days) in adult rats within a nose-only inhalation chamber. Processes involved in brain toxicity were investigated 24 h after exposure. RESULTS AND DISCUSSION: Site-specific effects in terms of neuroanatomy and concentration-dependent changes in specific cellular actors were observed. Results obtained in the olfactory bulb suggest a potential early effect on the survival of microglial cells. Depending on the mode of exposure, these cells showed a decrease in density accompanied by an increase in an apoptotic marker. An abnormal phenotype of the nuclei of mature neurons, suggesting neuronal suffering, was also observed in the frontal cortex, and can be linked to the involvement of oxidative stress. The differential effects observed according to exposure patterns could involve two components: local (brain-specific) and/or systemic. Indeed, tungsten, in addition to being found in the lungs and kidneys, was present in the brain of animals exposed to the high concentration. CONCLUSION: Our data question the perceived innocuity of tungsten relative to other metals and raise hypotheses regarding possible adaptive or neurotoxic mechanisms that could ultimately alter neuronal integrity.


Asunto(s)
Encéfalo , Exposición por Inhalación , Ratas Wistar , Tungsteno , Animales , Tungsteno/toxicidad , Masculino , Exposición por Inhalación/efectos adversos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Ratas , Biomarcadores/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Bulbo Olfatorio/efectos de los fármacos , Bulbo Olfatorio/metabolismo , Apoptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
2.
Am J Physiol Lung Cell Mol Physiol ; 324(5): L609-L624, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36852942

RESUMEN

Hereditary pulmonary veno-occlusive disease (hPVOD) is a severe form of autosomal recessive pulmonary hypertension and is due to biallelic loss of function of the EIF2AK4 gene (alias GCN2) coding for GCN2. GCN2 is a stress kinase that belongs to the integrated stress response pathway (ISR). Three rat lines carrying biallelic Gcn2 mutation were generated and found phenotypically normal and did not spontaneously develop a PVOD-related disease. We submitted these rats to amino acid deprivation to document the molecular and cellular response of the lungs and to identify phenotypic changes that could be involved in PVOD pathophysiology. Gcn2-/- rat lungs were analyzed under basal conditions and 3 days after a single administration of PEG-asparaginase (ASNase). Lung mRNAs were analyzed by RNAseq and single-cell RNAseq (scRNA-seq), flow cytometry, tissue imaging, and Western blots. The ISR was not activated after ASNase treatment in Gcn2-/- rat lungs, and apoptosis was increased. Several proinflammatory and innate immunity genes were overexpressed, and inflammatory cells infiltration was also observed in the perivascular area. Under basal conditions, scRNA-seq analysis of Gcn2-/- rat lungs revealed increases in two T-cell populations, a LAG3+ T-cell population and a proliferative T-cell population. Following ASNase administration, we observed an increase in calprotectin expression involved in TLR pathway activation and neutrophil infiltration. In conclusion, under basal and asparagine and glutamine deprivation induced by asparaginase administration, Gcn2-/- rats display molecular and cellular signatures in the lungs that may indicate a role for Gcn2 in immune homeostasis and provide further clues to the mechanisms of hPVOD development.


Asunto(s)
Hipertensión Pulmonar , Enfermedad Veno-Oclusiva Pulmonar , Animales , Ratas , Pulmón/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Enfermedad Veno-Oclusiva Pulmonar/genética , ARN Mensajero
3.
Acta Oncol ; 62(2): 150-158, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36786671

RESUMEN

INTRODUCTION: Right-lateralized cardiac substructures can be substantially exposed during right breast cancer (R-BC) radiotherapy. The cardiac benefit of deep inspiration breath hold (DIBH) is established in combination with volumetric modulated arctherapy (VMAT) for left breast cancer with regional node irradiation but is unknown for R-BC. This study evaluated the dosimetric benefit of DIBH for locoregional irradiation of R-BC with VMAT. MATERIAL AND METHODS: All patients treated for R-BC with adjuvant locoregional DIBH-VMAT in the Department of Radiation Oncology of the Institut Curie (Paris, France) until December 2022 were included, corresponding to 15 patients. FB- and DIBH-VMAT plans were compared both for a normofractionated regimen (50 Gy/25fx) used for treatment and a replanned hypofractionated regimen (40 Gy/15fx). Dose to the heart, cardiac substructures (sinoatrial node (SAN), atrio-ventricular node (AVN), right coronary artery, left anterior descending coronary artery, left ventricle), ipsilateral lung and liver were retrieved and compared. RESULTS: Mean heart dose (MHD) was 3.33 Gy with FB vs. 3.10 Gy with DIBH on normofractionated plans (p = 0.489), and 2.58 Gy with FB vs. 2.41 Gy with DIBH on hypofractionated plan (p = 0.489). The benefit of DIBH was not significant for any cardiac substructure. The most exposed cardiac substructure were the SAN (mean dose of 6.62 Gy for FB- and 5.64 Gy for DIBH-VMAT on normofractionated plans) and the RCA (mean dose of 4.21 Gy for FB- and 4.06 Gy for DIBH-VMAT on normofractionated plans). The maximum benefit was observed for the RCA with a median individual dose reduction of 0.84 Gy on normofractionated plans (p = 0.599). No significant dosimetric difference were observed for right lung. Liver mean dose was significantly lower with DIBH with median values decreasing from 2.54 Gy to 0.87 Gy (p = 0.01). CONCLUSION: Adding DIBH to efficient cardiac-sparing radiotherapy techniques, such as VMAT, is not justified in the general case for locoregional R-BC irradiation. Specific R-BC patient subpopulations who could benefit from additional DIBH combination with locoregional VMAT are yet to be identified.


Asunto(s)
Neoplasias de la Mama , Radioterapia de Intensidad Modulada , Neoplasias de Mama Unilaterales , Humanos , Femenino , Neoplasias de la Mama/radioterapia , Radioterapia de Intensidad Modulada/métodos , Contencion de la Respiración , Planificación de la Radioterapia Asistida por Computador/métodos , Neoplasias de Mama Unilaterales/radioterapia , Dosificación Radioterapéutica , Corazón/efectos de la radiación , Órganos en Riesgo/efectos de la radiación
4.
Circ Res ; 118(5): 822-33, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26838788

RESUMEN

RATIONALE: Pulmonary arterial hypertension is characterized by vascular remodeling and neomuscularization. PW1(+) progenitor cells can differentiate into smooth muscle cells (SMCs) in vitro. OBJECTIVE: To determine the role of pulmonary PW1(+) progenitor cells in vascular remodeling characteristic of pulmonary arterial hypertension. METHODS AND RESULTS: We investigated their contribution during chronic hypoxia-induced vascular remodeling in Pw1(nLacZ+/-) mouse expressing ß-galactosidase in PW1(+) cells and in differentiated cells derived from PW1(+) cells. PW1(+) progenitor cells are present in the perivascular zone in rodent and human control lungs. Using progenitor markers, 3 distinct myogenic PW1(+) cell populations were isolated from the mouse lung of which 2 were significantly increased after 4 days of chronic hypoxia. The number of proliferating pulmonary PW1(+) cells and the proportion of ß-gal(+) vascular SMC were increased, indicating a recruitment of PW1(+) cells and their differentiation into vascular SMC during early chronic hypoxia-induced neomuscularization. CXCR4 inhibition using AMD3100 prevented PW1(+) cells differentiation into SMC but did not inhibit their proliferation. Bone marrow transplantation experiments showed that the newly formed ß-gal(+) SMC were not derived from circulating bone marrow-derived PW1(+) progenitor cells, confirming a resident origin of the recruited PW1(+) cells. The number of pulmonary PW1(+) cells was also increased in rats after monocrotaline injection. In lung from pulmonary arterial hypertension patients, PW1-expressing cells were observed in large numbers in remodeled vascular structures. CONCLUSIONS: These results demonstrate the existence of a novel population of resident SMC progenitor cells expressing PW1 and participating in pulmonary hypertension-associated vascular remodeling.


Asunto(s)
Hipertensión Pulmonar/metabolismo , Factores de Transcripción de Tipo Kruppel/biosíntesis , Músculo Liso Vascular/metabolismo , Células Madre/metabolismo , Remodelación Vascular/fisiología , Animales , Células Cultivadas , Humanos , Hipertensión Pulmonar/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Liso Vascular/patología , Ratas , Células Madre/patología
5.
Sci Rep ; 13(1): 4111, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36914734

RESUMEN

During nuclear fuel processing, workers can potentially be exposed to repeated inhalations of uranium compounds. Uranium nephrotoxicity is well documented after acute uranium intake, but it is controversial after long-term or protracted exposure. This study aims to analyze the nephrotoxicity threshold after repeated uranium exposure through upper airways and to investigate the resulting uranium biokinetics in comparison to reference models. Mice (C57BL/6J) were exposed to uranyl nitrate (0.03-3 mg/kg/day) via intranasal instillation four times a week for two weeks. Concentrations of uranium in urines and tissues were measured at regular time points (from day 1 to 91 post-exposure). At each exposure level, the amount of uranium retained in organs/tissues (kidney, lung, bone, nasal compartment, carcass) and excreta (urine, feces) reflected the two consecutive weeks of instillation except for renal uranium retention for the highest uranium dose. Nephrotoxicity biomarkers, KIM-1, clusterin and osteopontin, are induced from day 4 to day 21 and associated with changes in renal function (arterial fluxes) measured using non-invasive functional imaging (Doppler-ultrasonography) and confirmed by renal histopathological analysis. These results suggest that specific biokinetic models should be developed to consider altered uranium excretion and retention in kidney due to nephrotoxicity. The threshold is between 0.25 and 1 mg/kg/day after repeated exposure to uranium via upper airways.


Asunto(s)
Líquidos Corporales , Uranio , Ratones , Animales , Uranio/toxicidad , Ratones Endogámicos C57BL , Riñón/patología , Heces
6.
Front Oncol ; 12: 892882, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35860581

RESUMEN

Background: Previous studies suggested that radiation therapy (RT) for breast cancer (BC) can induce cardiac arrhythmias and conduction disorders. However, the association with mean heart dose and specific cardiac substructures doses was less studied. Materials and Methods: We conducted a nested case-control study based on French BC patients, enrolled in the European MEDIRAD-BRACE study (https://clinicaltrials.gov, Identifier: NCT03211442), who underwent three-dimensional conformal radiation therapy (3D-CRT) between 2009 and 2013 and were retrospectively followed until 2019. Cases were incident cases of cardiac arrhythmia. Controls without arrhythmia were selected with propensity-scored matching by age, duration of follow-up, chemotherapy, hypertension, and diabetes (ratio 1:4 or 5). Doses to the whole heart (WH), left and right atria (LA and RA), and left and right ventricles (LV and RV) were obtained after delineation with multi-atlas-based automatic segmentation. Results: The study included 116 patients (21 cases and 95 controls). Mean age at RT was 64 ± 10 years, mean follow-up was 7.0 ± 1.3 years, and mean interval from RT to arrhythmia was 4.3 ± 2.1 years. None of the results on association between arrhythmia and cardiac doses reached statistical significance. However, the proportion of right-sided BC was higher among patients with arrhythmia than among controls (57% vs. 51%, OR = 1.18, p = 0.73). Neither mean WH dose, nor LV, RV, and LA doses were associated with an increased risk of arrhythmia (OR = 1.00, p > 0.90). In contrast, the RA dose was slightly higher for cases compared to controls [interquartile range (0.61-1.46 Gy) vs. (0.49-1.31 Gy), p = 0.44], and a non-significant trend toward a potentially higher risk of arrhythmia with increasing RA dose was observed (OR = 1.19, p = 0.60). Subanalysis according to BC laterality showed that the association with RA dose was reinforced specifically for left-sided BC (OR = 1.76, p = 0.75), while for right-sided BC, the ratio of mean RA/WH doses may better predict arrhythmia (OR = 2.39, p = 0.35). Conclusion: Despite non-significant results, our exploratory investigation on BC patients treated with RT is the first study to suggest that right-sided BC patients and the right atrium irradiation may require special attention regarding the risk of cardiac arrhythmia and conduction disorders. Further studies are needed to expand on this topic.

7.
J Am Heart Assoc ; 11(7): e023021, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35348002

RESUMEN

Background Platelet-derived growth factor is a major regulator of the vascular remodeling associated with pulmonary arterial hypertension. We previously showed that protein widely 1 (PW1+) vascular progenitor cells participate in early vessel neomuscularization during experimental pulmonary hypertension (PH) and we addressed the role of the platelet-derived growth factor receptor type α (PDGFRα) pathway in progenitor cell-dependent vascular remodeling and in PH development. Methods and Results Remodeled pulmonary arteries from patients with idiopathic pulmonary arterial hypertension showed an increased number of perivascular and vascular PW1+ cells expressing PDGFRα. PW1nLacZ reporter mice were used to follow the fate of pulmonary PW1+ progenitor cells in a model of chronic hypoxia-induced PH development. Under chronic hypoxia, PDGFRα inhibition prevented the increase in PW1+ progenitor cell proliferation and differentiation into vascular smooth muscle cells and reduced pulmonary vessel neomuscularization, but did not prevent an increased right ventricular systolic pressure or the development of right ventricular hypertrophy. Conversely, constitutive PDGFRα activation led to neomuscularization via PW1+ progenitor cell differentiation into new smooth muscle cells and to PH development in male mice without fibrosis. In vitro, PW1+ progenitor cell proliferation, but not differentiation, was dependent on PDGFRα activity. Conclusions These results demonstrate a major role of PDGFRα signaling in progenitor cell-dependent lung vessel neomuscularization and vascular remodeling contributing to PH development, including in idiopathic pulmonary arterial hypertension patients. Our findings suggest that PDGFRα blockers may offer a therapeutic add-on strategy to combine with current pulmonary arterial hypertension treatments to reduce vascular remodeling. Furthermore, our study highlights constitutive PDGFRα activation as a novel experimental PH model.


Asunto(s)
Hipertensión Pulmonar , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Animales , Proliferación Celular , Células Cultivadas , Humanos , Hipertensión Pulmonar/metabolismo , Hipoxia , Pulmón , Masculino , Ratones , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Remodelación Vascular
8.
Cancers (Basel) ; 13(16)2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34439129

RESUMEN

The impact of sex in the development of long-term toxicities affecting the quality of life of cancer survivors has not been investigated experimentally. To address this issue, a series of neurologic and cardiologic endpoints were used to investigate sex-based differences triggered by paclitaxel treatment and radiotherapy exposure. Male and female wild-type (WT) mice were treated with paclitaxel (150 and 300 mg/kg) administered weekly over 6 weeks or exposed to 19 Gy cardiac irradiation. Cohorts were analyzed for behavioral and neurobiologic endpoints to assess systemic toxicity of paclitaxel or cardiovascular endpoints to assess radiotherapy toxicity. Interestingly, female WT mice exhibited enhanced tolerance compared to male WT mice regardless of the treatment regimen. To provide insight into the possible sex-specific protective mechanisms, rhoB-deficient animals and elderly mice (22 months) were used with a focus on the possible contribution of sex hormones, including estrogen. In females, RhoB deficiency and advanced age had no impact on neurocognitive impairment induced by paclitaxel but enhanced cardiac sensitivity to radiotherapy. Conversely, rhoB-deficiency protected males from radiation toxicity. In sum, RhoB was identified as a molecular determinant driving estrogen-dependent cardioprotection in female mice, whereas neuroprotection was not sex hormone dependent. To our knowledge, this study revealed for the first time sex- and organ-specific responses to paclitaxel and radiotherapy.

9.
Int J Radiat Biol ; 97(11): 1516-1525, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34402738

RESUMEN

BACKGROUND: The circulatory system distributes nutrients, signaling molecules, and immune cells to vital organs and soft tissues. Epidemiological, animal, and in vitro cellular mechanistic studies have highlighted that exposure to ionizing radiation (IR) can induce molecular changes in cellular and subcellular milieus leading to long-term health impacts, particularly on the circulatory system. Although the mechanisms for the pathologies are not fully elucidated, endothelial dysfunction is proven to be a critical event via radiation-induced oxidative stress mediators. To delineate connectivities of events specifically to cardiovascular disease (CVD) initiation and progression, the adverse outcome pathway (AOP) approach was used with consultation from field experts. AOPs are a means to organize information around a disease of interest to a regulatory question. An AOP begins with a molecular initiating event and ends in an adverse outcome via sequential linkages of key event relationships that are supported by evidence in the form of the modified Bradford-Hill criteria. Detailed guidelines on building AOPs are provided by the Organisation for Economic Cooperation and Development (OECD) AOP program. Here, we report on the questions and discussions needed to develop an AOP for CVD resulting from IR exposure. A recent workshop jointly organized by the MELODI (Multidisciplinary European Low Dose Initiative) and the ALLIANCE (European Radioecology Alliance) associations brought together experts from the OECD to present the AOP approach and tools with examples from the toxicology field. As part of this workshop, four working groups were formed to discuss the identification of adverse outcomes relevant to radiation exposures and development of potential AOPs, one of which was focused on IR-induced cardiovascular effects. Each working group comprised subject matter experts and radiation researchers interested in the specific disease area and included an AOP coach. CONCLUSION: The CVD working group identified the critical questions of interest for AOP development, including the exposure scenario that would inform the evidence, the mechanisms of toxicity, the initiating event, intermediate key events/relationships, and the type of data currently available. This commentary describes the four-day discussion of the CVD working group, its outcomes, and demonstrates how collaboration and expert consultation is vital to informing AOP construction.


Asunto(s)
Rutas de Resultados Adversos , Enfermedades Cardiovasculares , Sistema Cardiovascular , Animales , Enfermedades Cardiovasculares/etiología , Radiación Ionizante , Derivación y Consulta , Medición de Riesgo
10.
Biochem J ; 395(2): 249-58, 2006 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-16402920

RESUMEN

We recently documented the expression of a novel human mRNA variant encoding a yet uncharacterized SERCA [SR (sarcoplasmic reticulum)/ER (endoplasmic reticulum) Ca2+-ATPase] protein, SERCA2c [Gélébart, Martin, Enouf and Papp (2003) Biochem. Biophys. Res. Commun. 303, 676-684]. In the present study, we have analysed the expression and functional characteristics of SERCA2c relative to SERCA2a and SERCA2b isoforms upon their stable heterologous expression in HEK-293 cells (human embryonic kidney 293 cells). All SERCA2 proteins induced an increased Ca2+ content in the ER of intact transfected cells. In microsomes prepared from transfected cells, SERCA2c showed a lower apparent affinity for cytosolic Ca2+ than SERCA2a and a catalytic turnover rate similar to SERCA2b. We further demonstrated the expression of the endogenous SERCA2c protein in protein lysates isolated from heart left ventricles using a newly generated SERCA2c-specific antibody. Relative to the known uniform distribution of SERCA2a and SERCA2b in cardiomyocytes of the left ventricle tissue, SERCA2c was only detected in a confined area of cardiomyocytes, in close proximity to the sarcolemma. This finding led us to explore the expression of the presently known cardiac Ca2+-ATPase isoforms in heart failure. Comparative expression of SERCAs and PMCAs (plasma-membrane Ca2+-ATPases) was performed in four nonfailing hearts and five failing hearts displaying mixed cardiomyopathy and idiopathic dilated cardiomyopathies. Relative to normal subjects, cardiomyopathic patients express more PMCAs than SERCA2 proteins. Interestingly, SERCA2c expression was significantly increased (166+/-26%) in one patient. Taken together, these results demonstrate the expression of the novel SERCA2c isoform in the heart and may point to a still unrecognized role of PMCAs in cardiomyopathies.


Asunto(s)
ATPasas Transportadoras de Calcio/metabolismo , Cardiomiopatías/enzimología , Cardiomiopatías/patología , Retículo Endoplásmico/enzimología , Miocardio/citología , Miocardio/enzimología , Retículo Sarcoplasmático/enzimología , Adulto , Señalización del Calcio , ATPasas Transportadoras de Calcio/genética , Proteínas de Transporte de Catión , Línea Celular , Expresión Génica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Proteínas de la Membrana/metabolismo , Persona de Mediana Edad , Miocardio/patología , ATPasas Transportadoras de Calcio de la Membrana Plasmática , Isoformas de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico
12.
Cardiovasc Res ; 65(4): 793-802, 2005 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-15721859

RESUMEN

Annexins are a family of 13 proteins known to bind phospholipids (PL) in a Ca(2+)-dependent way. They are ubiquitous proteins and share a similar structure characterized by a conserved C-terminal domain with Ca(2+) binding sites and a variable N-terminal domain. Depending on Ca(2+) concentration, they have been reported to participate in a variety of membrane-related events such as exocytosis, endocytosis, apoptosis and binding to cytoskeletal proteins. They have also been reported to regulate protein activities. This review will focus on annexins in the heart, and particularly on annexins A2, A5, A6 and A7. Annexin A2 has been found in endothelial cells and reported to play a central role in control of plasmin-mediated processes. Annexin A5 is mainly localized in cardiomyocytes. However, it could be relocated to interstitial tissue in ischemic and failing hearts or it could be externalized and exhibit a proapoptotic effect in cardiomyocytes. Annexin A6 is the most abundant annexin in the heart, and has been localized in various cell types including myocytes. Overexpression of annexin A6 has underlined physiological alterations in contractile mechanics leading to dilated cardiomyopathy, whereas knockout has been found to induce faster changes in Ca(2+) transient and increased contractility, suggesting a negative inotropic role for annexin A6. Annexin A7 is expressed in heart and skeletal muscle. In annexin A7 null mutant mice decreases in the force-frequency relationship were observed in adult cardiomyocytes, consistent with regulation of Ca(2+) handling. In conclusion, while annexin A2 was involved in regulation of fibrin homeostasis, alterations in expression and activity of annexins A5, A6 and A7 have been associated with regulation of Ca(2+) handling in the heart, but the target of each annexin has not yet been identified.


Asunto(s)
Anexinas/fisiología , Calcio/metabolismo , Miocardio/metabolismo , Animales , Anexinas/análisis , Insuficiencia Cardíaca/metabolismo , Humanos , Miocitos Cardíacos/metabolismo
13.
Radiother Oncol ; 120(1): 175-83, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27406443

RESUMEN

BACKGROUND & AIM: Despite extensive study of the contribution of cell death and apoptosis to radiation-induced acute intestinal injury, our knowledge of the signaling mechanisms involved in epithelial barrier dysfunction remains inadequate. Because PrP(c) plays a key role in intestinal homeostasis by renewing epithelia, we sought to study its role in epithelial barrier function after irradiation. DESIGN: Histology, morphometry and plasma FD-4 levels were used to examine ileal architecture, wound healing, and intestinal leakage in PrP(c)-deficient (KO) and wild-type (WT) mice after total-body irradiation. Impairment of the PrP(c) Src pathway after irradiation was explored by immunofluorescence and confocal microscopy, with Caco-2/Tc7 cells. Lastly, dasatinib treatment was used to switch off the Src pathway in vitro and in vivo. RESULTS: The decrease in radiation-induced lethality, improved intestinal wound healing, and reduced intestinal leakage promoted by PrP(c) deficiency demonstrate its involvement in acute intestinal damage. Irradiation of Cacao2/Tc7 cells induced PrP(c) to target the nuclei associated with Src activation. Finally, the protective effect triggered by dasatinib confirmed Src involvement in radiation-induced acute intestinal toxicity. CONCLUSION: Our data are the first to show a role for the PrP(c)-Src pathway in acute intestinal response to radiation injury and offer a novel therapeutic opportunity.


Asunto(s)
Dasatinib/uso terapéutico , Intestinos/efectos de la radiación , Proteínas Priónicas/deficiencia , Traumatismos por Radiación/prevención & control , Familia-src Quinasas/antagonistas & inhibidores , Animales , Proteína Tirosina Quinasa CSK , Células CACO-2 , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas Priónicas/fisiología , Irradiación Corporal Total , Familia-src Quinasas/fisiología
14.
Circulation ; 110(16): 2368-75, 2004 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-15466641

RESUMEN

BACKGROUND: An emerging concept is that a neuronal isoform of nitric oxide synthase (NOS1) may regulate myocardial contractility. However, a role for NOS1-derived nitric oxide (NO) in heart failure (HF) has not been defined. METHODS AND RESULTS: Using a model of myocardial infarction-induced HF, we demonstrated that cardiac NOS1 expression and activity increased in HF rats (P<0.05 and P<0.001 versus shams, respectively). This was associated with translocation of NOS1 from the ryanodine receptor to the sarcolemma through interactions with caveolin-3 in HF hearts. With ex vivo and in vivo pressure-volume analysis, cardiac NOS1-derived NO was found to be negatively inotropic in shams but not HF hearts. Ventricular elastance (E(es)) was significantly reduced in HF rats (P<0.05), and tau, the time constant of left ventricular relaxation, was prolonged (both P<0.05). Acute NOS1 inhibition significantly increased E(es) by 33+/-3% and tau by 17+/-2% (P<0.05) in shams, although these effects were significantly attenuated in HF hearts. beta-Adrenergic stimulation induced a marked increase in systolic performance in sham hearts, with the responses being significantly blunted in HF hearts. E(es) increased by 163+/-42% (P<0.01) in sham hearts and 56+/-9% in HF hearts, and LV +dP/dt increased by 97+/-9% (P<0.01) in shams and 37+/-7% (P<0.05) in the HF group. Interestingly, preferential NOS1 inhibition enhanced the blunted responses of LV +dP/dt and E(es) to beta-adrenergic stimulation in HF rats but had no effect in shams. CONCLUSIONS: These results provide the first evidence that increased NOS1-derived NO production may play a role in the autocrine regulation of myocardial contractility in HF.


Asunto(s)
Insuficiencia Cardíaca/enzimología , Contracción Miocárdica/fisiología , Infarto del Miocardio/complicaciones , Miocardio/enzimología , Proteínas del Tejido Nervioso/fisiología , Óxido Nítrico Sintasa/fisiología , Óxido Nítrico/fisiología , Receptores Adrenérgicos beta/fisiología , Agonistas Adrenérgicos beta/farmacología , Animales , Comunicación Autocrina , Caveolina 3 , Caveolinas/metabolismo , Dobutamina/farmacología , Inducción Enzimática , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/etiología , Isoproterenol/farmacología , Masculino , Contracción Miocárdica/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo I , Ratas , Ratas Wistar , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Sarcolema/metabolismo , Disfunción Ventricular Izquierda/enzimología , Disfunción Ventricular Izquierda/etiología
15.
Cardiovasc Res ; 64(3): 496-506, 2004 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-15537503

RESUMEN

OBJECTIVE: Annexins are Ca(2+)-dependent phospholipid binding proteins. Externalized annexin A5 has been recently suggested to have a proapoptotic effect. Our aim was to determine whether annexin A5, which is intracellular in cardiomyocytes, could be translocated and/or externalized and play a role during the apoptotic process. METHODS: Apoptosis was induced in rat cardiomyocytes by continuous incubation with staurosporine or 30 min treatment with H(2)O(2) and was measured by phosphatidylserine (PS) externalization, TUNEL staining and DNA ladder. Immunofluorescence labeling of annexin A5 was performed on permeabilized or nonpermeabilized cardiomyocytes. RESULTS: Staurosporine or H(2)O(2) treatment of neonatal cardiomyocytes resulted in significant increases of apoptosis at 24 h, but H(2)O(2) treatment led to a faster and higher PS externalization than that observed with ST. In both neonatal and adult cardiomyocytes, annexin A5 was intracellular in control conditions but was found at the external face of sarcolemma during apoptosis. Furthermore, neonatal cardiomyocytes with externalized annexin A5 have apoptotic characteristics and their number increased with time. Interestingly, immediately after H(2)O(2) induction, the number of annexin A5-positive cells was higher than that of PS-positive cells (p

Asunto(s)
Anexina A5/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Anexina A5/análisis , Anexina A5/inmunología , Anticuerpos Monoclonales/farmacología , Apoptosis , Caspasa 3 , Caspasas/metabolismo , Células Cultivadas , Citocromos c/metabolismo , Inhibidores Enzimáticos/farmacología , Peróxido de Hidrógeno/farmacología , Etiquetado Corte-Fin in Situ , Microscopía Confocal , Miocitos Cardíacos/patología , Proteína Quinasa C/antagonistas & inhibidores , Ratas , Ratas Wistar , Sarcolema/metabolismo , Estaurosporina/farmacología
16.
Sci Transl Med ; 6(245): 245ra93, 2014 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-25031268

RESUMEN

In vitro studies suggested that sub-millisecond pulses of radiation elicit less genomic instability than continuous, protracted irradiation at the same total dose. To determine the potential of ultrahigh dose-rate irradiation in radiotherapy, we investigated lung fibrogenesis in C57BL/6J mice exposed either to short pulses (≤ 500 ms) of radiation delivered at ultrahigh dose rate (≥ 40 Gy/s, FLASH) or to conventional dose-rate irradiation (≤ 0.03 Gy/s, CONV) in single doses. The growth of human HBCx-12A and HEp-2 tumor xenografts in nude mice and syngeneic TC-1 Luc(+) orthotopic lung tumors in C57BL/6J mice was monitored under similar radiation conditions. CONV (15 Gy) triggered lung fibrosis associated with activation of the TGF-ß (transforming growth factor-ß) cascade, whereas no complications developed after doses of FLASH below 20 Gy for more than 36 weeks after irradiation. FLASH irradiation also spared normal smooth muscle and epithelial cells from acute radiation-induced apoptosis, which could be reinduced by administration of systemic TNF-α (tumor necrosis factor-α) before irradiation. In contrast, FLASH was as efficient as CONV in the repression of tumor growth. Together, these results suggest that FLASH radiotherapy might allow complete eradication of lung tumors and reduce the occurrence and severity of early and late complications affecting normal tissue.


Asunto(s)
Rayos gamma , Neoplasias/patología , Animales , Apoptosis/efectos de la radiación , Vasos Sanguíneos/efectos de la radiación , Bronquios/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Femenino , Humanos , Pulmón/irrigación sanguínea , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Fibrosis Pulmonar/patología , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Radiother Oncol ; 111(1): 63-71, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24721545

RESUMEN

BACKGROUND: Cardiac toxicity is a side-effect of anti-cancer treatment including radiotherapy and this translational study was initiated to characterize radiation-induced cardiac side effects in a population of breast cancer patients and in experimental models in order to identify novel therapeutic target. METHODS: The size of the heart was evaluated in CO-HO-RT patients by measuring the Cardiac-Contact-Distance before and after radiotherapy (48months of follow-up). In parallel, fibrogenic signals were studied in a severe case of human radiation-induced pericarditis. Lastly, radiation-induced cardiac damage was studied in mice and in rat neonatal cardiac cardiomyocytes. RESULTS: In patients, time dependent enhancement of the CCD was measured suggesting occurrence of cardiac hypertrophy. In the case of human radiation-induced pericarditis, we measured the activation of fibrogenic (CTGF, RhoA) and remodeling (MMP2) signals. In irradiated mice, we documented decreased contractile function, enlargement of the ventricular cavity and long-term modification of the time constant of decay of Ca(2+) transients. Both hypertrophy and amyloid deposition were correlated with the induction of Epac-1; whereas radiation-induced fibrosis correlated with Rho/CTGF activation. Transactivation studies support Epac contribution in hypertrophy stimulation and showed that radiotherapy and Epac displayed specific and synergistic signals. CONCLUSION: Epac-1 has been identified as a novel regulator of radiation-induced hypertrophy and amyloidosis but not fibrosis in the heart.


Asunto(s)
Amiloidosis/etiología , Cardiomegalia/etiología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Corazón/efectos de la radiación , Traumatismos por Radiación/etiología , Amiloidosis/metabolismo , Amiloidosis/patología , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/radioterapia , Calcio/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/patología , Femenino , Fibrosis/etiología , Fibrosis/metabolismo , Fibrosis/patología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de la radiación , Traumatismos por Radiación/metabolismo , Traumatismos por Radiación/patología , Ratas
18.
PLoS One ; 8(2): e57052, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23451141

RESUMEN

AIM: Investigating long-term cardiac effects of low doses of ionizing radiation is highly relevant in the context of interventional cardiology and radiotherapy. Epidemiological data report that low doses of irradiation to the heart can result in significant increase in the cardiovascular mortality by yet unknown mechanisms. In addition co-morbidity factor such as hypertension or/and atherosclerosis can enhance cardiac complications. Therefore, we explored the mechanisms that lead to long-term cardiac remodelling and investigated the interaction of radiation-induced damage to heart and cardiovascular systems with atherosclerosis, using wild-type and ApoE-deficient mice. METHODS AND RESULTS: ApoE-/- and wild-type mice were locally irradiated to the heart at 0, 0.2 and 2 Gy (RX). Twenty, 40 and 60 weeks post-irradiation, echocardiography were performed and hearts were collected for cardiomyocyte isolation, histopathological analysis, study of inflammatory infiltration and fibrosis deposition. Common and strain-specific pathogenic pathways were found. Significant alteration of left ventricular function (eccentric hypertrophy) occurred in both strains of mice. Low dose irradiation (0.2 Gy) induced premature death in ApoE-/- mice (47% died at 20 weeks). Acute inflammatory infiltrate was observed in scarring areas with accumulation of M1-macrophages and secretion of IL-6. Increased expression of the fibrogenic factors (TGF-ß1 and PAI-1) was measured earlier in cardiomyocytes isolated from ApoE-/- than in wt animals. CONCLUSION: The present study shows that cardiac exposure to low dose of ionizing radiation induce significant physiological, histopathological, cellular and molecular alterations in irradiated heart with mild functional impairment. Atherosclerotic predisposition precipitated cardiac damage induced by low doses with an early pro-inflammatory polarization of macrophages.


Asunto(s)
Apolipoproteínas E/fisiología , Relación Dosis-Respuesta en la Radiación , Fibrosis , Mediadores de Inflamación/sangre , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Apolipoproteínas E/genética , Western Blotting , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
19.
Fibrogenesis Tissue Repair ; 5(Suppl 1): S13, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23259677

RESUMEN

Chronic toxicities of locoregional and systemic oncological treatments commonly develop in long-term cancer survivors. Amongst these toxicities, post-radiotherapeutic complications alter patient's quality of life. Reduction of exposure of normal tissues can be achieved by optimization of radiotherapy. Furthermore, understanding of the fibrogenic mechanisms has provided targets to prevent, mitigate, and reverse late radiation-induced damages. This mini-review shows how (i) global molecular studies using gene profiling can provide tools to develop new intervention strategies and (ii) how successful clinical trials, conducted in particular with combined pentoxifylline-vitamin E, can take benefice of biological and molecular evidences to improve our understanding of fibrogenic mechanisms, enhance the robustness of proposed treatments, and lead ultimately to better treatments for patient's benefice.

20.
Curr Drug Targets ; 11(11): 1395-404, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20583978

RESUMEN

The medical options available to prevent or treat radiation-induced injury are scarce and developing effective countermeasures is still an open research field. In addition, more than half of cancer patients are treated with radiation therapy, which displays a high antitumor efficacy but can cause, albeit rarely, disabling long-term toxicities including radiation fibrosis. Progress has been made in the definition of molecular pathways associated with normal tissue toxicity that suggest potentially effective therapeutic targets. Targeting the Rho/ROCK pathway seems a promising anti-fibrotic approach, at least in the gut; the current study was performed to assess whether this target was relevant to the prevention and/or treatment of injury to the main thoracic organs, namely heart and lungs. First, we showed activation of two important fibrogenic pathways (Smad and Rho/ROCK) in response to radiation-exposure to adult cardiomyocytes; we extended these observations in vivo to the heart and lungs of mice, 15 and 30 weeks post-irradiation. We correlated this fibrogenic molecular imprint with alteration of heart physiology and long-term remodelling of pulmonary and cardiac histological structures. Lastly, cardiac and pulmonary radiation injury and bleomycin-induced pulmonary fibrosis were successfully modulated using Rho/ROCK inhibitors (statins and Y-27632) and this was associated with a normalization of fibrogenic markers. In conclusion, the present paper shows for the first time, activation of Rho/ROCK and Smad pathways in pulmonary and cardiac radiation-induced delayed injury. Our findings thereby reveal a safe and efficient therapeutic opportunity for the abrogation of late thoracic radiation injury, potentially usable either before or after radiation exposure; this approach is especially attractive in (1) the radiation oncology setting, as it does not interfere with prior anti-cancer treatment and in (2) radioprotection, as applicable to the treatment of established radiation injury, for example in the case of radiation accidents or acts of terrorism.


Asunto(s)
Fibrosis Endomiocárdica/prevención & control , Traumatismos por Radiación/prevención & control , Tórax/efectos de la radiación , Quinasas Asociadas a rho/metabolismo , Amidas/farmacología , Animales , Bleomicina/farmacología , Factor de Crecimiento del Tejido Conjuntivo/genética , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/patología , Fibrosis Endomiocárdica/metabolismo , Femenino , Corazón/efectos de los fármacos , Corazón/fisiopatología , Corazón/efectos de la radiación , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Pulmón/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miocitos Cardíacos/efectos de la radiación , Pravastatina/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Piridinas/farmacología , Traumatismos por Radiación/metabolismo , Neumonitis por Radiación/metabolismo , Neumonitis por Radiación/prevención & control , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Simvastatina/farmacología , Proteínas Smad/genética , Proteínas Smad/metabolismo , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/genética , Proteína de Unión al GTP rhoB/genética , Proteína de Unión al GTP rhoB/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA