Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Biochem ; 125(5): e30565, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38591469

RESUMEN

Mammals exhibit two distinct types of adipose depots: white adipose tissue (WAT) and brown adipose tissue (BAT). While WAT primarily functions as a site for energy storage, BAT serves as a thermogenic tissue that utilizes energy and glucose consumption to regulate core body temperature. Under specific stimuli such as exercise, cold exposure, and drug treatment, white adipocytes possess a remarkable ability to undergo transdifferentiation into brown-like cells known as beige adipocytes. This transformation process, known as the "browning of WAT," leads to the acquisition of new morphological and physiological characteristics by white adipocytes. We investigated the potential role of Irisin, a 12 kDa myokine that is secreted in mice and humans by skeletal muscle after physical activity, in inducing the browning process in mesenchymal stromal cells (MSCs). A subset of the MSCs possesses the remarkable capability to differentiate into different cell types such as adipocytes, osteocytes, and chondrocytes. Consequently, comprehending the effects of Irisin on MSC biology becomes a crucial factor in investigating antiobesity medications. In our study, the primary objective is to evaluate the impact of Irisin on various cell types engaged in distinct stages of the differentiation process, including stem cells, committed precursors, and preadipocytes. By analyzing the effects of Irisin on these specific cell populations, our aim is to gain a comprehensive understanding of its influence throughout the entire differentiation process, rather than solely concentrating on the final differentiated cells. This approach enables us to obtain insights into the broader effects of Irisin on the cellular dynamics and mechanisms involved in adipogenesis.


Asunto(s)
Adipogénesis , Diferenciación Celular , Fibronectinas , Células Madre Mesenquimatosas , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Fibronectinas/metabolismo , Fibronectinas/farmacología , Diferenciación Celular/efectos de los fármacos , Células Cultivadas
2.
Artículo en Inglés | MEDLINE | ID: mdl-39115821

RESUMEN

Thrombosis continues to pose a significant challenge in cardiovascular and cerebrovascular diseases, contributing to severe health complications such as myocardial infarction, acute ischemic stroke, and venous thromboembolism. Despite the wide array of anti-thrombotic drugs available, these treatments frequently carry substantial risks, notably including bleeding complications. In this paper, we comment the findings reported by Liu et al. about the anti-thrombotic potential of protopanaxatriol saponins from panax notoginseng.

3.
Int J Mol Sci ; 25(18)2024 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-39337658

RESUMEN

The insulin-heart axis plays a pivotal role in the pathophysiology of cardiovascular disease (CVD) in insulin-resistant states, including type 2 diabetes mellitus. Insulin resistance disrupts glucose and lipid metabolism, leading to systemic inflammation, oxidative stress, and atherogenesis, which contribute to heart failure (HF) and other CVDs. This review was conducted by systematically searching PubMed, Scopus, and Web of Science databases for peer-reviewed studies published in the past decade, focusing on therapeutic interventions targeting the insulin-heart axis. Studies were selected based on their relevance to insulin resistance, cardiovascular outcomes, and the efficacy of pharmacologic treatments. Key findings from the review highlight the efficacy of lifestyle modifications, such as dietary changes and physical activity, which remain the cornerstone of managing insulin resistance and improving cardiovascular outcomes. Moreover, pharmacologic interventions, such as metformin, sodium-glucose cotransporter 2 inhibitors, glucagon-like peptide-1 receptor agonists, and dipeptidyl peptidase-4 inhibitors, have shown efficacy in reducing cardiovascular risk by addressing metabolic dysfunction, reducing inflammation, and improving endothelial function. Furthermore, emerging treatments, such as angiotensin receptor-neprilysin inhibitors, and mechanical interventions like ventricular assist devices offer new avenues for managing HF in insulin-resistant patients. The potential of these therapies to improve left ventricular ejection fraction and reverse pathological cardiac remodeling highlights the importance of early intervention. However, challenges remain in optimizing treatment regimens and understanding the long-term cardiovascular effects of these agents. Future research should focus on personalized approaches that integrate lifestyle and pharmacologic therapies to effectively target the insulin-heart axis and mitigate the burden of cardiovascular complications in insulin-resistant populations.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Insulina , Humanos , Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Animales , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/terapia , Hipoglucemiantes/uso terapéutico
4.
Int J Mol Sci ; 25(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39125938

RESUMEN

Insulin signaling is vital for regulating cellular metabolism, growth, and survival pathways, particularly in tissues such as adipose, skeletal muscle, liver, and brain. Its role in the heart, however, is less well-explored. The heart, requiring significant ATP to fuel its contractile machinery, relies on insulin signaling to manage myocardial substrate supply and directly affect cardiac muscle metabolism. This review investigates the insulin-heart axis, focusing on insulin's multifaceted influence on cardiac function, from metabolic regulation to the development of physiological cardiac hypertrophy. A central theme of this review is the pathophysiology of insulin resistance and its profound implications for cardiac health. We discuss the intricate molecular mechanisms by which insulin signaling modulates glucose and fatty acid metabolism in cardiomyocytes, emphasizing its pivotal role in maintaining cardiac energy homeostasis. Insulin resistance disrupts these processes, leading to significant cardiac metabolic disturbances, autonomic dysfunction, subcellular signaling abnormalities, and activation of the renin-angiotensin-aldosterone system. These factors collectively contribute to the progression of diabetic cardiomyopathy and other cardiovascular diseases. Insulin resistance is linked to hypertrophy, fibrosis, diastolic dysfunction, and systolic heart failure, exacerbating the risk of coronary artery disease and heart failure. Understanding the insulin-heart axis is crucial for developing therapeutic strategies to mitigate the cardiovascular complications associated with insulin resistance and diabetes.


Asunto(s)
Resistencia a la Insulina , Insulina , Transducción de Señal , Humanos , Animales , Insulina/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Corazón/fisiología , Corazón/fisiopatología , Sistema Renina-Angiotensina/fisiología
5.
Int J Mol Sci ; 25(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38892431

RESUMEN

Orexin-A is a neuropeptide product of the lateral hypothalamus that acts on two receptors, OX1R and OX2R. The orexinergic system is involved in feeding, sleep, and pressure regulation. Recently, orexin-A levels have been found to be negatively correlated with renal function. Here, we analyzed orexin-A levels as well as the incidence of SNPs in the hypocretin neuropeptide precursor (HCRT) and its receptors, HCRTR1 and HCRTR2, in 64 patients affected by autosomal dominant polycystic kidney disease (ADPKD) bearing truncating mutations in the PKD1 or PKD2 genes. Twenty-four healthy volunteers constituted the control group. Serum orexin-A was assessed by ELISA, while the SNPs were investigated through Sanger sequencing. Correlations with the main clinical features of PKD patients were assessed. PKD patients showed impaired renal function (mean eGFR 67.8 ± 34.53) and a statistically higher systolic blood pressure compared with the control group (p < 0.001). Additionally, orexin-A levels in PKD patients were statistically higher than those in healthy controls (477.07 ± 69.42 pg/mL vs. 321.49 ± 78.01 pg/mL; p < 0.001). Furthermore, orexin-A inversely correlated with blood pressure (p = 0.0085), while a direct correlation with eGFR in PKD patients was found. None of the analyzed SNPs showed any association with orexin-A levels in PKD. In conclusion, our data highlights the emerging role of orexin-A in renal physiology and its potential relevance to PKD. Further research is essential to elucidate the intricate mechanisms underlying orexin-A signaling in renal function and its therapeutic implications for PKD and associated cardiovascular complications.


Asunto(s)
Receptores de Orexina , Orexinas , Polimorfismo de Nucleótido Simple , Humanos , Orexinas/metabolismo , Orexinas/genética , Masculino , Femenino , Persona de Mediana Edad , Receptores de Orexina/metabolismo , Receptores de Orexina/genética , Adulto , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo , Riñón Poliquístico Autosómico Dominante/metabolismo , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/sangre , Estudios de Casos y Controles , Anciano , Presión Sanguínea , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/metabolismo , Enfermedades Renales Poliquísticas/sangre
6.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38473961

RESUMEN

Obesity, a complex disorder with rising global prevalence, is a chronic, inflammatory, and multifactorial disease and it is characterized by excessive adipose tissue accumulation and associated comorbidities. Adipose tissue (AT) is an extremely diverse organ. The composition, structure, and functionality of AT are significantly influenced by characteristics specific to everyone, in addition to the variability connected to various tissue types and its location-related heterogeneity. Recent investigation has shed light on the intricate relationship between bone marrow stem cells and obesity, revealing potential mechanisms that contribute to the development and consequences of this condition. Mesenchymal stem cells within the bone marrow, known for their multipotent differentiation capabilities, play a pivotal role in adipogenesis, the process of fat cell formation. In the context of obesity, alterations in the bone marrow microenvironment may influence the differentiation of mesenchymal stem cells towards adipocytes, impacting overall fat storage and metabolic balance. Moreover, bone marrow's role as a crucial component of the immune system adds another layer of complexity to the obesity-bone marrow interplay. This narrative review summarizes the current research findings on the connection between bone marrow stem cells and obesity, highlighting the multifaceted roles of bone marrow in adipogenesis and inflammation.


Asunto(s)
Adipocitos , Tejido Adiposo , Humanos , Tejido Adiposo/metabolismo , Diferenciación Celular , Adipocitos/metabolismo , Adipogénesis , Obesidad/metabolismo , Inflamación/metabolismo , Células de la Médula Ósea
7.
Curr Issues Mol Biol ; 45(8): 6651-6666, 2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37623239

RESUMEN

Oxidative stress is a critical factor in the pathogenesis and progression of diabetes and its associated complications. The imbalance between reactive oxygen species (ROS) production and the body's antioxidant defence mechanisms leads to cellular damage and dysfunction. In diabetes, chronic hyperglycaemia and mitochondrial dysfunction contribute to increased ROS production, further exacerbating oxidative stress. This oxidative burden adversely affects various aspects of diabetes, including impaired beta-cell function and insulin resistance, leading to disrupted glucose regulation. Additionally, oxidative stress-induced damage to blood vessels and impaired endothelial function contribute to the development of diabetic vascular complications such as retinopathy, nephropathy, and cardiovascular diseases. Moreover, organs and tissues throughout the body, including the kidneys, nerves, and eyes, are vulnerable to oxidative stress, resulting in diabetic nephropathy, neuropathy, and retinopathy. Strategies to mitigate oxidative stress in diabetes include antioxidant therapy, lifestyle modifications, and effective management of hyperglycaemia. However, further research is necessary to comprehensively understand the underlying mechanisms of oxidative stress in diabetes and to evaluate the efficacy of antioxidant interventions in preventing and treating diabetic complications. By addressing oxidative stress, it might be possible to alleviate the burden of diabetes and improve patient outcomes.

8.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36834515

RESUMEN

The ketogenic diet (KD), a diet high in fat and protein but low in carbohydrates, is gaining much interest due to its positive effects, especially in neurodegenerative diseases. Beta-hydroxybutyrate (BHB), the major ketone body produced during the carbohydrate deprivation that occurs in KD, is assumed to have neuroprotective effects, although the molecular mechanisms responsible for these effects are still unclear. Microglial cell activation plays a key role in the development of neurodegenerative diseases, resulting in the production of several proinflammatory secondary metabolites. The following study aimed to investigate the mechanisms by which BHB determines the activation processes of BV2 microglial cells, such as polarization, cell migration and expression of pro- and anti-inflammatory cytokines, in the absence or in the presence of lipopolysaccharide (LPS) as a proinflammatory stimulus. The results showed that BHB has a neuroprotective effect in BV2 cells, inducing both microglial polarization towards an M2 anti-inflammatory phenotype and reducing migratory capacity following LPS stimulation. Furthermore, BHB significantly reduced expression levels of the proinflammatory cytokine IL-17 and increased levels of the anti-inflammatory cytokine IL-10. From this study, it can be concluded that BHB, and consequently the KD, has a fundamental role in neuroprotection and prevention in neurodegenerative diseases, presenting new therapeutic targets.


Asunto(s)
Dieta Cetogénica , Fármacos Neuroprotectores , Humanos , Ácido 3-Hidroxibutírico/farmacología , Microglía/metabolismo , Enfermedades Neuroinflamatorias , Lipopolisacáridos/farmacología , Antiinflamatorios/farmacología , Citocinas/metabolismo , Fármacos Neuroprotectores/farmacología
9.
Molecules ; 28(8)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37110573

RESUMEN

Microglia, the resident macrophage-like population in the central nervous system, play a crucial role in the pathogenesis of many neurodegenerative disorders by triggering an inflammatory response that leads to neuronal death. Neuroprotective compounds to treat or prevent neurodegenerative diseases are a new field of study in modern medicine. Microglia are activated in response to inflammatory stimuli. The pathogenesis of various neurodegenerative diseases is closely related to the constant activation of microglia due to their fundamental role as a mediator of inflammation in the brain environment. α-Tocopherol, also known as vitamin E, is reported to possess potent neuroprotective effects. The goal of this study was to investigate the biological effects of vitamin E on BV2 microglial cells, as a possible neuroprotective and anti-inflammatory agent, following stimulation with lipopolysaccharide (LPS). The results showed that the pre-incubation of microglia with α-tocopherol can guarantee neuroprotective effects during microglial activation induced by LPS. α-Tocopherol preserved the branched morphology typical of microglia in a physiological state. It also reduced the migratory capacity; the production of pro-inflammatory and anti-inflammatory cytokines such as TNF-α and IL-10; and the activation of receptors such as TRL4 and CD40, which modulate the PI3K-Akt signaling pathway. The results of this study require further insights and research, but they present new scenarios for the application of vitamin E as an antioxidant for the purpose of greater neuroprotection in vivo for the prevention of possible neurodegenerative diseases.


Asunto(s)
Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Humanos , Lipopolisacáridos/farmacología , Microglía , alfa-Tocoferol/farmacología , alfa-Tocoferol/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Macrófagos/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo , Vitamina E/farmacología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/prevención & control , Enfermedades Neurodegenerativas/metabolismo , Óxido Nítrico/metabolismo , FN-kappa B/metabolismo
10.
Int J Mol Sci ; 23(20)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36293005

RESUMEN

Two different types of adipose depots can be observed in mammals: white adipose tissue (WAT) and brown adipose tissue (BAT). The primary role of WAT is to deposit surplus energy in the form of triglycerides, along with many metabolic and hormonal activities; as thermogenic tissue, BAT has the distinct characteristic of using energy and glucose consumption as a strategy to maintain the core body temperature. Under specific stimuli-such as exercise, cold exposure, and drug treatment-white adipocytes can utilize their extraordinary flexibility to transdifferentiate into brown-like cells, called beige adipocytes, thereby acquiring new morphological and physiological characteristics. For this reason, the process is identified as the 'browning of WAT'. We evaluated the ability of some drugs, including GW501516, sildenafil, and rosiglitazone, to induce the browning process of adult white adipocytes obtained from differentiated mesenchymal stromal cells (MSCs). In addition, we broadened our investigation by evaluating the potential browning capacity of IRISIN, a myokine that is stimulated by muscular exercises. Our data indicate that IRISIN was effective in promoting the browning of white adipocytes, which acquire increased expression of UCP1, increased mitochondrial mass, and modification in metabolism, as suggested by an increase of mitochondrial oxygen consumption, primarily in presence of glucose as a nutrient. These promising browning agents represent an appealing focus in the therapeutic approaches to counteracting metabolic diseases and their associated obesity.


Asunto(s)
Adipocitos Blancos , Células Madre Mesenquimatosas , Animales , Adipocitos Blancos/metabolismo , Fibronectinas/metabolismo , Rosiglitazona/farmacología , Citrato de Sildenafil/farmacología , Médula Ósea/metabolismo , Metabolismo Energético , Termogénesis , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Células Madre Mesenquimatosas/metabolismo , Glucosa/metabolismo , Triglicéridos/metabolismo , Mamíferos/metabolismo
11.
Pediatr Cardiol ; 42(5): 1133-1140, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33864103

RESUMEN

Patients with bicuspid aortic valve (BAV) have an increased risk of aortic dilation and aortic dissection or rupture. The impact of physical training on the natural course of aortopathy in BAV patients remains unclear. The aim of this study was to evaluate the impact of regular physical activity on aortic diameters in a consecutive cohort of paediatric patients with BAV. Consecutive paediatric BAV patients were evaluated and categorized into two groups: physically active and sedentary subjects. Only the subjects with a complete 2-year follow-up were included in the study. To evaluate the potential impact of physical activity on aortic size, aortic diameters were measured at the sinus of Valsalva and mid-ascending aorta using echocardiography. We defined aortic diameter progression the increase of aortic diameter ≥ 10% from baseline. Among 90 BAV patients (11.5 ± 3.4 years of age, 77% males), 53 (59%) were physically active subjects. Compared to sedentary, physically active subjects were not significantly more likely to have > 10% increase in sinus of Valsalva (13% vs. 8%, p-value = 0.45) or mid-ascending aorta diameter (9% vs. 13%, p-value = 0.55) at 2 years follow-up, both in subjects with sinus of Valsalva diameter progression (3.7 ± 1.0 mm vs. 3.5 ± 0.8 mm, p-value = 0.67) and in those with ascending aorta diameter progression (3.0 ± 0.8 mm vs. 3.2 ± 1.3 mm, p-value = 0.83). In our paediatric cohort of BAV patients, the prevalence and the degree of aortic diameter progression was not significantly different between physically active and sedentary subjects, suggesting that aortic dilation is unrelated to regular physical activity over a 2-year period.


Asunto(s)
Válvula Aórtica/patología , Enfermedad de la Válvula Aórtica Bicúspide/fisiopatología , Progresión de la Enfermedad , Ejercicio Físico , Adolescente , Válvula Aórtica/diagnóstico por imagen , Enfermedad de la Válvula Aórtica Bicúspide/diagnóstico por imagen , Estudios de Casos y Controles , Niño , Ecocardiografía , Femenino , Humanos , Masculino , Estudios Retrospectivos
12.
Heart Fail Clin ; 17(2): 303-313, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33673954

RESUMEN

We evaluated the impact of weight loss (WL) using a Mediterranean diet and mild-to-moderate-intensity aerobic exercise program, on clinical status of obese, symptomatic patients with hypertrophic cardiomyopathy (HCM). Compared with nonresponders, responders showed a significant reduction of left atrial diameter, left atrial volume index (LAVI), E/E'average, pulmonary artery systolic pressure (PASP), and a significant increase in Vo2max (%) and peak workload. Body mass index changes correlated with reduction in left atrial diameter, LAVI, E/E'average, PASP, and increase of Vo2max (mL/Kg/min), Vo2max (%), peak workload. Mediterranean diet and aerobic exercise is associated with clinical-hemodynamic improvement in obese symptomatic HCM patients.


Asunto(s)
Cardiomiopatía Hipertrófica/terapia , Dieta Mediterránea , Ejercicio Físico/fisiología , Obesidad/epidemiología , Pérdida de Peso/fisiología , Cardiomiopatía Hipertrófica/epidemiología , Cardiomiopatía Hipertrófica/fisiopatología , Comorbilidad , Prueba de Esfuerzo , Humanos
13.
Int J Mol Sci ; 21(9)2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32354030

RESUMEN

BACKGROUND: On the 31 December 2019, the World Health Organization (WHO) was informed of a cluster of cases of pneumonia of unknown origin detected in Wuhan City, Hubei Province, China. The infection spread first in China and then in the rest of the world, and on the 11th of March, the WHO declared that COVID-19 was a pandemic. Taking into consideration the mortality rate of COVID-19, about 5-7%, and the percentage of positive patients admitted to intensive care units being 9-11%, it should be mandatory to consider and take all necessary measures to contain the COVID-19 infection. Moreover, given the recent evidence in different hospitals suggesting IL-6 and TNF-α inhibitor drugs as a possible therapy for COVID-19, we aimed to highlight that a dietary intervention could be useful to prevent the infection and/or to ameliorate the outcomes during therapy. Considering that the COVID-19 infection can generate a mild or highly acute respiratory syndrome with a consequent release of pro-inflammatory cytokines, including IL-6 and TNF-α, a dietary regimen modification in order to improve the levels of adiponectin could be very useful both to prevent the infection and to take care of patients, improving their outcomes.


Asunto(s)
Antioxidantes/administración & dosificación , Betacoronavirus , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/terapia , Dieta , Suplementos Dietéticos , Neumonía Viral/inmunología , Neumonía Viral/terapia , Adiponectina/metabolismo , Ácido Ascórbico/administración & dosificación , COVID-19 , Infecciones por Coronavirus/metabolismo , Ácidos Grasos Omega-3/administración & dosificación , Ácidos Grasos Omega-3/metabolismo , Flavonoides/administración & dosificación , Humanos , Interleucina-6/inmunología , Interleucina-6/metabolismo , Enfermedades Pulmonares/inmunología , Enfermedades Pulmonares/metabolismo , Enfermedades Pulmonares/terapia , Pandemias , Neumonía Viral/metabolismo , SARS-CoV-2 , Factor de Necrosis Tumoral alfa/metabolismo
14.
Medicina (Kaunas) ; 56(12)2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33255569

RESUMEN

BACKGROUND AND OBJECTIVES: Coronavirus disease 2019 (COVID-19) is a highly contagious infectious disease, responsible for a global pandemic that began in January 2020. Human/COVID-19 interactions cause different outcomes ranging from minor health consequences to death. Since social interaction is the default mode by which individuals communicate with their surroundings, different modes of contagion can play a role in determining the long-term consequences for mental health and emotional well-being. We examined some basic aspects of human social interaction, emphasizing some particular features of the emotional contagion. Moreover, we analyzed the main report that described brain damage related to the COVID-19 infection. Indeed, the goal of this review is to suggest a possible explanation for the relationships among emotionally impaired people, brain damage, and COVID-19 infection. RESULTS: COVID-19 can cause several significant neurological disorders and the pandemic has been linked to a rise in people reporting mental health problems, such as depression and anxiety. Neurocognitive symptoms associated with COVID-19 include delirium, both acute and chronic attention and memory impairment related to hippocampal and cortical damage, as well as learning deficits in both adults and children. CONCLUSIONS: Although our knowledge on the biology and long-term clinical outcomes of the COVID-19 infection is largely limited, approaching the pandemic based on lessons learnt from previous outbreaks of infectious diseases and the biology of other coronaviruses will provide a suitable pathway for developing public mental health strategies, which could be positively translated into therapeutic approaches, attempting to improve stress coping responses, thus contributing to alleviate the burden driven by the pandemic.


Asunto(s)
Encefalopatías/virología , COVID-19 , Salud Mental , Distrés Psicológico , SARS-CoV-2/patogenicidad , Adaptación Psicológica , COVID-19/epidemiología , COVID-19/fisiopatología , COVID-19/psicología , Humanos
18.
Neuropsychobiology ; 78(1): 7-13, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30970364

RESUMEN

BACKGROUND: Recent investigations have highlighted significant differences in verbal recall between patients with panic disorder (PD) and controls. These studies have highlighted that verbal memory and working memory could be impaired in PD. OBJECTIVES: The objective of the present meta-analysis is to confirm this hypothesis, reviewing the studies that have investigated neurocognitive testing in PD. METHODS: We performed a systematic literature search for studies published between 1980 and 2015 that reported cognitive measurements in PD patients and controls. Effect size estimates were computed using the restricted maximum likelihood model. Only case-control studies were selected for this meta-analysis. We included studies that made a direct comparison between PD subjects and healthy controls. The diagnostic group consisted of adult patients aged over 18 years diagnosed with PD. We excluded the studies that did not employ a case-control design. All statistical analyses were carried out on R using the "metafor" package version 1.9-8. The effect size for each study neuropsychological test was calculated using the mean and SD of performance results, and p values < 0.05 were considered significant. RESULTS: We identified few studies that tested verbal memory and executive functions in PD patients and controls, and this difference was not significant. On the other hand, there are several studies that have used the emotional Stroop task to assess cognitive functions in PD. There is no robust evidence of impairment of memory function in PD; however, when considering the emotional Stroop task, it was found that PD patients performed slower (p < 0.01) than healthy controls for all three types of stimuli (neutral, negative, positive). CONCLUSION: This meta-analysis included a small number of studies, which may have introduced bias into the analysis. However, there is some evidence of impairment of neurocognitive functions in PD when performing the emotional Stroop task. Furthermore, the paucity of studies evaluating neurocognition in PD suggests the need for further research in this field in order to draw meaningful conclusions.


Asunto(s)
Atención , Emociones , Trastorno de Pánico/psicología , Humanos , Test de Stroop
19.
J Cell Physiol ; 233(12): 9345-9353, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29319158

RESUMEN

This study was conceived to evaluate the effects of three different diets on body composition, metabolic parameters, and serum oxidative status. We enrolled three groups of healthy men (omnivores, vegetarians, and vegans) with similar age, weight and BMI, and we observed a significant decrease in muscle mass index and lean body mass in vegan compared to vegetarian and omnivore groups, and higher serum homocysteine levels in vegetarians and vegans compared to omnivores. We studied whether serum from omnivore, vegetarian, and vegan subjects affected oxidative stress, growth and differentiation of both cardiomyoblast cell line H9c2 and H-H9c2 (H9c2 treated with H2 O2 to induce oxidative damage). We demonstrated that vegan sera treatment of both H9c2 and H-H9c2 cells induced an increase of TBARS values and cell death and a decrease of free NO2- compared to vegetarian and omnivorous sera. Afterwards, we investigated the protective effects of vegan, vegetarian, and omnivore sera on the morphological changes induced by H2 O2 in H9c2 cell line. We showed that the omnivorous sera had major antioxidant and differentiation properties compared to vegetarian and vegan sera. Finally, we evaluated the influence of the three different groups of sera on MAPKs pathway and our data suggested that ERK expression increased in H-H9c2 cells treated with vegetarian and vegan sera and could promote cell death. The results obtained in this study demonstrated that restrictive vegan diet could not prevent the onset of metabolic and cardiovascular diseases nor protect by oxidative damage.


Asunto(s)
Diferenciación Celular , Dieta Vegana , Células Musculares/citología , Músculos/anatomía & histología , Adulto , Animales , Antropometría , Recuento de Células , Línea Celular , Forma de la Célula , Humanos , Sistema de Señalización de MAP Quinasas , Masculino , Células Musculares/enzimología , Miocitos Cardíacos/patología , Tamaño de los Órganos , Oxidación-Reducción , Estrés Oxidativo , Proyectos Piloto , Ratas , Vegetarianos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA