Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 161(5): 971-987, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-26000478

RESUMEN

Constraint-based reconstruction and analysis (COBRA) methods at the genome scale have been under development since the first whole-genome sequences appeared in the mid-1990s. A few years ago, this approach began to demonstrate the ability to predict a range of cellular functions, including cellular growth capabilities on various substrates and the effect of gene knockouts at the genome scale. Thus, much interest has developed in understanding and applying these methods to areas such as metabolic engineering, antibiotic design, and organismal and enzyme evolution. This Primer will get you started.


Asunto(s)
Modelos Genéticos , Biología de Sistemas/métodos , Simulación por Computador , Escherichia coli/genética , Humanos , Ingeniería Metabólica , Mapas de Interacción de Proteínas , Thermotoga maritima/genética , Levaduras/genética
2.
Genome Res ; 32(5): 1004-1014, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35277433

RESUMEN

The Klebsiella pneumoniae species complex (KpSC) is a set of seven Klebsiella taxa that are found in a variety of niches and are an important cause of opportunistic health care-associated infections in humans. Because of increasing rates of multi-drug resistance within the KpSC, there is a growing interest in better understanding the biology and metabolism of these organisms to inform novel control strategies. We collated 37 sequenced KpSC isolates isolated from a variety of niches, representing all seven taxa. We generated strain-specific genome-scale metabolic models (GEMs) for all 37 isolates and simulated growth phenotypes on 511 distinct carbon, nitrogen, sulfur, and phosphorus substrates. Models were curated and their accuracy was assessed using matched phenotypic growth data for 94 substrates (median accuracy of 96%). We explored species-specific growth capabilities and examined the impact of all possible single gene deletions using growth simulations in 145 core carbon substrates. These analyses revealed multiple strain-specific differences, within and between species, and highlight the importance of selecting a diverse range of strains when exploring KpSC metabolism. This diverse set of highly accurate GEMs could be used to inform novel drug design, enhance genomic analyses, and identify novel virulence and resistance determinants. We envisage that these 37 curated strain-specific GEMs, covering all seven taxa of the KpSC, provide a valuable resource to the Klebsiella research community.


Asunto(s)
Infecciones por Klebsiella , Klebsiella , Carbono , Farmacorresistencia Bacteriana Múltiple/genética , Genoma Bacteriano , Humanos , Klebsiella/genética , Infecciones por Klebsiella/genética , Klebsiella pneumoniae/genética , Virulencia/genética
3.
Proc Natl Acad Sci U S A ; 119(18): e2119396119, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35476524

RESUMEN

Combatting Clostridioides difficile infections, a dominant cause of hospital-associated infections with incidence and resulting deaths increasing worldwide, is complicated by the frequent emergence of new virulent strains. Here, we employ whole-genome sequencing, high-throughput phenotypic screenings, and genome-scale models of metabolism to evaluate the genetic diversity of 451 strains of C. difficile. Constructing the C. difficile pangenome based on this set revealed 9,924 distinct gene clusters, of which 2,899 (29%) are defined as core, 2,968 (30%) are defined as unique, and the remaining 4,057 (41%) are defined as accessory. We develop a strain typing method, sequence typing by accessory genome (STAG), that identifies 176 genetically distinct groups of strains and allows for explicit interrogation of accessory gene content. Thirty-five strains representative of the overall set were experimentally profiled on 95 different nutrient sources, revealing 26 distinct growth profiles and unique nutrient preferences; 451 strain-specific genome scale models of metabolism were constructed, allowing us to computationally probe phenotypic diversity in 28,864 unique conditions. The models create a mechanistic link between the observed phenotypes and strain-specific genetic differences and exhibit an ability to correctly predict growth in 76% of measured cases. The typing and model predictions are used to identify and contextualize discriminating genetic features and phenotypes that may contribute to the emergence of new problematic strains.


Asunto(s)
Clostridioides difficile , Infección Hospitalaria , Clostridioides , Clostridioides difficile/genética , Variación Genética , Humanos , Biología de Sistemas
4.
FASEB J ; 36(7): e22408, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35713567

RESUMEN

Metabolomics has emerged as a powerful new tool in precision medicine. No studies have yet been published on the metabolomic changes in cerebrospinal fluid (CSF) produced by acute endurance exercise. CSF and plasma were collected from 19 young active adults (13 males and 6 females) before and 60 min after a 90-min monitored outdoor run. The median age, BMI, and VO2 max of subjects was 25 years (IQR 22-31), 23.2 kg/m2 (IQR 21.7-24.5), and 47 ml/kg/min (IQR 38-51), respectively. Targeted, broad-spectrum metabolomics was performed by liquid chromatography, tandem mass spectrometry (LC-MS/MS). In the CSF, purines and pyrimidines accounted for 32% of the metabolic impact after acute endurance exercise. Branch chain amino acids, amino acid neurotransmitters, fatty acid oxidation, phospholipids, and Krebs cycle metabolites traceable to mitochondrial function accounted for another 52% of the changes. A narrow but important channel of metabolic communication was identified between the brain and body by correlation network analysis. By comparing these results to previous work in experimental animal models, we found that over 80% of the changes in the CSF correlated with a cascade of mitochondrial and metabolic changes produced by ATP signaling. ATP is released as a co-neurotransmitter and neuromodulator at every synapse studied to date. By regulating brain mitochondrial function, ATP release was identified as an early step in the kinetic cascade of layered benefits produced by endurance exercise.


Asunto(s)
Metabolómica , Espectrometría de Masas en Tándem , Adenosina Trifosfato , Aminoácidos , Animales , Cromatografía Liquida/métodos , Ejercicio Físico , Femenino , Humanos , Masculino , Metabolómica/métodos , Espectrometría de Masas en Tándem/métodos
5.
Pediatr Res ; 93(6): 1710-1720, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36109618

RESUMEN

BACKGROUND: The chemical composition of human milk has long-lasting effects on brain development. We examined the prognostic value of the human milk metabolome and exposome in children with the risk of neurodevelopmental delay (NDD). METHODS: This retrospective cohort study included 82 mother-infant pairs (40 male and 42 female infants). A total of 59 milk samples were from mothers with typically developing children and 23 samples were from mothers of children at risk. Milk samples were collected before 9 months of age (4.6 ± 2.5 months, mean ± SD). Neurocognitive development was assessed by maternal report at 14.2 ± 3.1 months using the Ages and Stages Questionnaires-2. RESULTS: Metabolome and exposome profiling identified 453 metabolites and 61 environmental chemicals in milk. Machine learning tools identified changes in deoxysphingolipids, phospholipids, glycosphingolipids, plasmalogens, and acylcarnitines in the milk of mothers with children at risk for future delay. A predictive classifier had a diagnostic accuracy of 0.81 (95% CI: 0.66-0.96) for females and 0.79 (95% CI: 0.62-0.94) for males. CONCLUSIONS: Once validated in larger studies, the chemical analysis of human milk might be added as an option in well-baby checks to help identify children at risk of NDD before the first symptoms appear. IMPACT: Maternal milk for infants sampled before 9 months of age contained sex-specific differences in deoxysphingolipids, sphingomyelins, plasmalogens, phospholipids, and acylcarnitines that predicted the risk of neurodevelopmental delay at 14.2 months of age. Once validated, this early biosignature in human milk might be incorporated into well-baby checks and help to identify infants at risk so early interventions might be instituted before the first symptoms appear.


Asunto(s)
Leche Humana , Plasmalógenos , Lactante , Niño , Humanos , Masculino , Femenino , Leche Humana/química , Plasmalógenos/análisis , Estudios Retrospectivos , Madres , Biomarcadores/análisis , Lactancia Materna
6.
PLoS Genet ; 16(7): e1008931, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32644999

RESUMEN

Shigella species are specialised lineages of Escherichia coli that have converged to become human-adapted and cause dysentery by invading human gut epithelial cells. Most studies of Shigella evolution have been restricted to comparisons of single representatives of each species; and population genomic studies of individual Shigella species have focused on genomic variation caused by single nucleotide variants and ignored the contribution of insertion sequences (IS) which are highly prevalent in Shigella genomes. Here, we investigate the distribution and evolutionary dynamics of IS within populations of Shigella dysenteriae Sd1, Shigella sonnei and Shigella flexneri. We find that five IS (IS1, IS2, IS4, IS600 and IS911) have undergone expansion in all Shigella species, creating substantial strain-to-strain variation within each population and contributing to convergent patterns of functional gene loss within and between species. We find that IS expansion and genome degradation are most advanced in S. dysenteriae and least advanced in S. sonnei; and using genome-scale models of metabolism we show that Shigella species display convergent loss of core E. coli metabolic capabilities, with S. sonnei and S. flexneri following a similar trajectory of metabolic streamlining to that of S. dysenteriae. This study highlights the importance of IS to the evolution of Shigella and provides a framework for the investigation of IS dynamics and metabolic reduction in other bacterial species.


Asunto(s)
Elementos Transponibles de ADN/genética , Disentería/genética , Evolución Molecular , Shigella dysenteriae/genética , ADN Bacteriano/genética , Disentería/microbiología , Escherichia coli/genética , Escherichia coli/patogenicidad , Genoma Bacteriano/genética , Humanos , Shigella dysenteriae/patogenicidad
7.
BMC Bioinformatics ; 23(1): 566, 2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36585633

RESUMEN

BACKGROUND: Escherichia coli Nissle 1917 (EcN) is a probiotic bacterium used to treat various gastrointestinal diseases. EcN is increasingly being used as a chassis for the engineering of advanced microbiome therapeutics. To aid in future engineering efforts, our aim was to construct an updated metabolic model of EcN with extended secondary metabolite representation. RESULTS: An updated high-quality genome-scale metabolic model of EcN, iHM1533, was developed based on comparison with 55 E. coli/Shigella reference GEMs and manual curation, including expanded secondary metabolite pathways (enterobactin, salmochelins, aerobactin, yersiniabactin, and colibactin). The model was validated and improved using phenotype microarray data, resulting in an 82.3% accuracy in predicting growth phenotypes on various nutrition sources. Flux variability analysis with previously published 13C fluxomics data validated prediction of the internal central carbon fluxes. A standardised test suite called Memote assessed the quality of iHM1533 to have an overall score of 89%. The model was applied by using constraint-based flux analysis to predict targets for optimisation of secondary metabolite production. Modelling predicted design targets from across amino acid metabolism, carbon metabolism, and other subsystems that are common or unique for influencing the production of various secondary metabolites. CONCLUSION: iHM1533 represents a well-annotated metabolic model of EcN with extended secondary metabolite representation. Phenotype characterisation and the iHM1533 model provide a better understanding of the metabolic capabilities of EcN and will help future metabolic engineering efforts.


Asunto(s)
Escherichia coli , Probióticos , Escherichia coli/metabolismo , Redes y Vías Metabólicas/genética , Ingeniería Metabólica
8.
BMC Genomics ; 23(1): 7, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34983386

RESUMEN

BACKGROUND: With the exponential growth of publicly available genome sequences, pangenome analyses have provided increasingly complete pictures of genetic diversity for many microbial species. However, relatively few studies have scaled beyond single pangenomes to compare global genetic diversity both within and across different species. We present here several methods for "comparative pangenomics" that can be used to contextualize multi-pangenome scale genetic diversity with gene function for multiple species at multiple resolutions: pangenome shape, genes, sequence variants, and positions within variants. RESULTS: Applied to 12,676 genomes across 12 microbial pathogenic species, we observed several shared resolution-specific patterns of genetic diversity: First, pangenome openness is associated with species' phylogenetic placement. Second, relationships between gene function and frequency are conserved across species, with core genomes enriched for metabolic and ribosomal genes and accessory genomes for trafficking, secretion, and defense-associated genes. Third, genes in core genomes with the highest sequence diversity are functionally diverse. Finally, certain protein domains are consistently mutation enriched across multiple species, especially among aminoacyl-tRNA synthetases where the extent of a domain's mutation enrichment is strongly function-dependent. CONCLUSIONS: These results illustrate the value of each resolution at uncovering distinct aspects in the relationship between genetic and functional diversity across multiple species. With the continued growth of the number of sequenced genomes, these methods will reveal additional universal patterns of genetic diversity at the pangenome scale.


Asunto(s)
Filogenia
9.
Environ Microbiol ; 24(9): 4425-4436, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35590448

RESUMEN

The grey-headed flying fox (Pteropus poliocephalus) is an endemic Australian fruit bat, known to carry zoonotic pathogens. We recently showed they harbour bacterial pathogen Klebsiella pneumoniae and closely related species in the K. pneumoniae species complex (KpSC); however, the dynamics of KpSC transmission and gene flow within flying fox colonies are poorly understood. High-resolution genome comparisons of 39 KpSC isolates from grey-headed flying foxes identified five putative strain transmission clusters (four intra- and one inter-colony). The instance of inter-colony strain transmission of K. africana was found between two flying fox populations within flying distance, indicating either direct or indirect transmission through a common food/water source. All 11 plasmids identified within the KpSC isolates showed 73% coverage (mean) and ≥95% identity to human-associated KpSC plasmids, indicating gene flow between human clinical and grey-headed flying fox isolates. Along with strain transmission, inter-species horizontal plasmid transmission between K. pneumoniae and Klebsiella africana was also identified within a flying fox colony. Finally, genome-scale metabolic models were generated to predict and compare substrate usage to previously published KpSC models, from human and environmental sources. These models indicated no distinction on the basis of metabolic capabilities. Instead, metabolic capabilities were consistent with population structure and ST/lineage.


Asunto(s)
Quirópteros , Animales , Australia/epidemiología , Quirópteros/microbiología , Humanos , Klebsiella , Plásmidos/genética , Agua
10.
Mol Syst Biol ; 17(7): e10099, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34288418

RESUMEN

Mesoplasma florum, a fast-growing near-minimal organism, is a compelling model to explore rational genome designs. Using sequence and structural homology, the set of metabolic functions its genome encodes was identified, allowing the reconstruction of a metabolic network representing ˜ 30% of its protein-coding genes. Growth medium simplification enabled substrate uptake and product secretion rate quantification which, along with experimental biomass composition, were integrated as species-specific constraints to produce the functional iJL208 genome-scale model (GEM) of metabolism. Genome-wide expression and essentiality datasets as well as growth data on various carbohydrates were used to validate and refine iJL208. Discrepancies between model predictions and observations were mechanistically explained using protein structures and network analysis. iJL208 was also used to propose an in silico reduced genome. Comparing this prediction to the minimal cell JCVI-syn3.0 and its parent JCVI-syn1.0 revealed key features of a minimal gene set. iJL208 is a stepping-stone toward model-driven whole-genome engineering.


Asunto(s)
Genoma , Redes y Vías Metabólicas , Genoma/genética , Genómica , Redes y Vías Metabólicas/genética , Modelos Biológicos
11.
Proc Natl Acad Sci U S A ; 116(28): 14368-14373, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31270234

RESUMEN

Catalysis using iron-sulfur clusters and transition metals can be traced back to the last universal common ancestor. The damage to metalloproteins caused by reactive oxygen species (ROS) can prevent cell growth and survival when unmanaged, thus eliciting an essential stress response that is universal and fundamental in biology. Here we develop a computable multiscale description of the ROS stress response in Escherichia coli, called OxidizeME. We use OxidizeME to explain four key responses to oxidative stress: 1) ROS-induced auxotrophy for branched-chain, aromatic, and sulfurous amino acids; 2) nutrient-dependent sensitivity of growth rate to ROS; 3) ROS-specific differential gene expression separate from global growth-associated differential expression; and 4) coordinated expression of iron-sulfur cluster (ISC) and sulfur assimilation (SUF) systems for iron-sulfur cluster biosynthesis. These results show that we can now develop fundamental and quantitative genotype-phenotype relationships for stress responses on a genome-wide basis.


Asunto(s)
Proteínas Hierro-Azufre/genética , Hierro/metabolismo , Metaloproteínas/genética , Especies Reactivas de Oxígeno/metabolismo , Catálisis , Proliferación Celular/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación de la Expresión Génica/genética , Peróxido de Hidrógeno/metabolismo , Operón/genética , Estrés Oxidativo/genética , Azufre/metabolismo
12.
PLoS Comput Biol ; 16(3): e1007608, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32119670

RESUMEN

The evolution of antimicrobial resistance (AMR) poses a persistent threat to global public health. Sequencing efforts have already yielded genome sequences for thousands of resistant microbial isolates and require robust computational tools to systematically elucidate the genetic basis for AMR. Here, we present a generalizable machine learning workflow for identifying genetic features driving AMR based on constructing reference strain-agnostic pan-genomes and training random subspace ensembles (RSEs). This workflow was applied to the resistance profiles of 14 antimicrobials across three urgent threat pathogens encompassing 288 Staphylococcus aureus, 456 Pseudomonas aeruginosa, and 1588 Escherichia coli genomes. We find that feature selection by RSE detects known AMR associations more reliably than common statistical tests and previous ensemble approaches, identifying a total of 45 known AMR-conferring genes and alleles across the three organisms, as well as 25 candidate associations backed by domain-level annotations. Furthermore, we find that results from the RSE approach are consistent with existing understanding of fluoroquinolone (FQ) resistance due to mutations in the main drug targets, gyrA and parC, in all three organisms, and suggest the mutational landscape of those genes with respect to FQ resistance is simple. As larger datasets become available, we expect this approach to more reliably predict AMR determinants for a wider range of microbial pathogens.


Asunto(s)
Biología Computacional/métodos , Farmacorresistencia Bacteriana/genética , Genoma Bacteriano/genética , Antibacterianos/farmacología , Antiinfecciosos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Escherichia coli/genética , Fluoroquinolonas/farmacología , Humanos , Aprendizaje Automático , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/genética , Staphylococcus aureus/genética , Secuenciación Completa del Genoma/métodos
13.
Proc Natl Acad Sci U S A ; 115(44): 11339-11344, 2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30309961

RESUMEN

The structure of the metabolic network contains myriad organism-specific variations across the tree of life, but the selection basis for pathway choices in different organisms is not well understood. Here, we examined the metabolic capabilities with respect to cofactor use and pathway thermodynamics of all sequenced organisms in the Kyoto Encyclopedia of Genes and Genomes Database. We found that (i) many biomass precursors have alternate synthesis routes that vary substantially in thermodynamic favorability and energy cost, creating tradeoffs that may be subject to selection pressure; (ii) alternative pathways in amino acid synthesis are characteristically distinguished by the use of biosynthetically unnecessary acyl-CoA cleavage; (iii) distinct choices preferring thermodynamic-favorable or cofactor-use-efficient pathways exist widely among organisms; (iv) cofactor-use-efficient pathways tend to have a greater yield advantage under anaerobic conditions specifically; and (v) lysine biosynthesis in particular exhibits temperature-dependent thermodynamics and corresponding differential pathway choice by thermophiles. These findings present a view on the evolution of metabolic network structure that highlights a key role of pathway thermodynamics and cofactor use in determining organism pathway choices.


Asunto(s)
Vías Biosintéticas/genética , Evolución Biológica , Biomasa , Bases de Datos Genéticas , Genoma/genética , Redes y Vías Metabólicas/genética , Filogenia , Termodinámica
14.
BMC Bioinformatics ; 21(1): 162, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32349661

RESUMEN

BACKGROUND: The reconstruction of metabolic networks and the three-dimensional coverage of protein structures have reached the genome-scale in the widely studied Escherichia coli K-12 MG1655 strain. The combination of the two leads to the formation of a structural systems biology framework, which we have used to analyze differences between the reactive oxygen species (ROS) sensitivity of the proteomes of sequenced strains of E. coli. As proteins are one of the main targets of oxidative damage, understanding how the genetic changes of different strains of a species relates to its oxidative environment can reveal hypotheses as to why these variations arise and suggest directions of future experimental work. RESULTS: Creating a reference structural proteome for E. coli allows us to comprehensively map genetic changes in 1764 different strains to their locations on 4118 3D protein structures. We use metabolic modeling to predict basal ROS production levels (ROStype) for 695 of these strains, finding that strains with both higher and lower basal levels tend to enrich their proteomes with antioxidative properties, and speculate as to why that is. We computationally assess a strain's sensitivity to an oxidative environment, based on known chemical mechanisms of oxidative damage to protein groups, defined by their localization and functionality. Two general groups - metalloproteins and periplasmic proteins - show enrichment of their antioxidative properties between the 695 strains with a predicted ROStype as well as 116 strains with an assigned pathotype. Specifically, proteins that a) utilize a molybdenum ion as a cofactor and b) are involved in the biogenesis of fimbriae show intriguing protective properties to resist oxidative damage. Overall, these findings indicate that a strain's sensitivity to oxidative damage can be elucidated from the structural proteome, though future experimental work is needed to validate our model assumptions and findings. CONCLUSION: We thus demonstrate that structural systems biology enables a proteome-wide, computational assessment of changes to atomic-level physicochemical properties and of oxidative damage mechanisms for multiple strains in a species. This integrative approach opens new avenues to study adaptation to a particular environment based on physiological properties predicted from sequence alone.


Asunto(s)
Adaptación Fisiológica , Escherichia coli K12/fisiología , Estrés Oxidativo , Proteoma/metabolismo , Antioxidantes/metabolismo , Proteínas de Escherichia coli/metabolismo , Fimbrias Bacterianas/metabolismo , Modelos Biológicos , Molibdeno/metabolismo , Operón/genética , Oxidación-Reducción , Periplasma/metabolismo , Fenotipo , Especies Reactivas de Oxígeno/metabolismo
15.
Artículo en Inglés | MEDLINE | ID: mdl-31932377

RESUMEN

We present a case of endocarditis wherein organisms cultured from different valve leaflets yielded different daptomycin susceptibilities from each other and from organisms obtained from peripheral blood culture. Genomic analyses showed mutations in mprF, purR, and agrA Pharmacokinetic simulations showed consistent activity of daptomycin plus beta-lactam against all subpopulations. This represents an opportunity to understand S. aureus evolution and fitness in vivo on daptomycin therapy and the role of beta-lactams to prevent the selection of daptomycin-resistant subpopulations.


Asunto(s)
Daptomicina/farmacología , Endocarditis Bacteriana/microbiología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Válvula Tricúspide/microbiología , Válvula Tricúspide/patología , Aminoaciltransferasas/genética , Proteínas Bacterianas/genética , Daptomicina/uso terapéutico , Endocarditis Bacteriana/tratamiento farmacológico , Endocarditis Bacteriana/genética , Humanos , Pruebas de Sensibilidad Microbiana , Mutación/genética , Proteínas Represoras/genética , Válvula Tricúspide/efectos de los fármacos , Secuenciación Completa del Genoma
16.
PLoS Comput Biol ; 15(1): e1006644, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30625152

RESUMEN

S. aureus is classified as a serious threat pathogen and is a priority that guides the discovery and development of new antibiotics. Despite growing knowledge of S. aureus metabolic capabilities, our understanding of its systems-level responses to different media types remains incomplete. Here, we develop a manually reconstructed genome-scale model (GEM-PRO) of metabolism with 3D protein structures for S. aureus USA300 str. JE2 containing 854 genes, 1,440 reactions, 1,327 metabolites and 673 3-dimensional protein structures. Computations were in 85% agreement with gene essentiality data from random barcode transposon site sequencing (RB-TnSeq) and 68% agreement with experimental physiological data. Comparisons of computational predictions with experimental observations highlight: 1) cases of non-essential biomass precursors; 2) metabolic genes subject to transcriptional regulation involved in Staphyloxanthin biosynthesis; 3) the essentiality of purine and amino acid biosynthesis in synthetic physiological media; and 4) a switch to aerobic fermentation upon exposure to extracellular glucose elucidated as a result of integrating time-course of quantitative exo-metabolomics data. An up-to-date GEM-PRO thus serves as a knowledge-based platform to elucidate S. aureus' metabolic response to its environment.


Asunto(s)
Medios de Cultivo , Genoma Bacteriano/genética , Staphylococcus aureus , Biología de Sistemas/métodos , Medios de Cultivo/metabolismo , Medios de Cultivo/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/genética , Bases del Conocimiento , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Metaboloma/efectos de los fármacos , Metaboloma/genética , Metabolómica , Modelos Biológicos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Staphylococcus aureus/fisiología
17.
PLoS Comput Biol ; 15(4): e1006971, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31009451

RESUMEN

Genome-scale metabolic models (GEMs) are mathematically structured knowledge bases of metabolism that provide phenotypic predictions from genomic information. GEM-guided predictions of growth phenotypes rely on the accurate definition of a biomass objective function (BOF) that is designed to include key cellular biomass components such as the major macromolecules (DNA, RNA, proteins), lipids, coenzymes, inorganic ions and species-specific components. Despite its importance, no standardized computational platform is currently available to generate species-specific biomass objective functions in a data-driven, unbiased fashion. To fill this gap in the metabolic modeling software ecosystem, we implemented BOFdat, a Python package for the definition of a Biomass Objective Function from experimental data. BOFdat has a modular implementation that divides the BOF definition process into three independent modules defined here as steps: 1) the coefficients for major macromolecules are calculated, 2) coenzymes and inorganic ions are identified and their stoichiometric coefficients estimated, 3) the remaining species-specific metabolic biomass precursors are algorithmically extracted in an unbiased way from experimental data. We used BOFdat to reconstruct the BOF of the Escherichia coli model iML1515, a gold standard in the field. The BOF generated by BOFdat resulted in the most concordant biomass composition, growth rate, and gene essentiality prediction accuracy when compared to other methods. Installation instructions for BOFdat are available in the documentation and the source code is available on GitHub (https://github.com/jclachance/BOFdat).


Asunto(s)
Biomasa , Genómica/métodos , Redes y Vías Metabólicas , Modelos Biológicos , Programas Informáticos , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Bacteriano
18.
PLoS Comput Biol ; 15(12): e1007562, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31860667

RESUMEN

Pseudomonas aeruginosa, a main cause of human infection, can gain resistance to the antibiotic aztreonam through a mutation in NalD, a transcriptional repressor of cellular efflux. Here we combine computational analysis of clinical isolates, transcriptomics, metabolic modeling and experimental validation to find a strong association between NalD mutations and resistance to aztreonam-as well as resistance to other antibiotics-across P. aeruginosa isolated from different patients. A detailed analysis of one patient's timeline shows how this mutation can emerge in vivo and drive rapid evolution of resistance while the patient received cancer treatment, a bone marrow transplantation, and antibiotics up to the point of causing the patient's death. Transcriptomics analysis confirmed the primary mechanism of NalD action-a loss-of-function mutation that caused constitutive overexpression of the MexAB-OprM efflux system-which lead to aztreonam resistance but, surprisingly, had no fitness cost in the absence of the antibiotic. We constrained a genome-scale metabolic model using the transcriptomics data to investigate changes beyond the primary mechanism of resistance, including adaptations in major metabolic pathways and membrane transport concurrent with aztreonam resistance, which may explain the lack of a fitness cost. We propose that metabolic adaptations may allow resistance mutations to endure in the absence of antibiotics and could be targeted by future therapies against antibiotic resistant pathogens.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Mutación con Pérdida de Función , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/genética , Antibacterianos/farmacología , Aztreonam/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biología Computacional , Perfilación de la Expresión Génica , Genes Bacterianos , Humanos , Redes y Vías Metabólicas , Modelos Biológicos , Modelos Moleculares , Filogenia , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Análisis de Sistemas
19.
Nat Rev Genet ; 15(2): 107-20, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24430943

RESUMEN

The prediction of cellular function from a genotype is a fundamental goal in biology. For metabolism, constraint-based modelling methods systematize biochemical, genetic and genomic knowledge into a mathematical framework that enables a mechanistic description of metabolic physiology. The use of constraint-based approaches has evolved over ~30 years, and an increasing number of studies have recently combined models with high-throughput data sets for prospective experimentation. These studies have led to validation of increasingly important and relevant biological predictions. As reviewed here, these recent successes have tangible implications in the fields of microbial evolution, interaction networks, genetic engineering and drug discovery.


Asunto(s)
Redes y Vías Metabólicas/fisiología , Metabolómica/métodos , Modelos Biológicos , Transducción de Señal/fisiología , Simulación por Computador , Genómica/métodos , Genotipo , Redes y Vías Metabólicas/genética , Fenotipo , Proteómica/métodos , Transducción de Señal/genética , Biología de Sistemas/métodos
20.
J Clin Microbiol ; 57(2)2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30463894

RESUMEN

Thanks to the genomics revolution, thousands of strain-specific whole-genome sequences are now accessible for a wide range of pathogenic bacteria. This availability enables big data informatics approaches to be used to study the spread and acquisition of antimicrobial resistance (AMR). In this issue of the Journal of Clinical Microbiology, Nguyen et al. (M. Nguyen, S. W. Long, P. F. McDermott, R. J. Olsen, R. Olson, R. L. Stevens, G. H. Tyson, S. Zhao, and J. J. Davis, J Clin Microbiol 57:e01260-18, 2019, https://doi.org/10.1128/JCM.01260-18) report the results obtained with their machine learning models based on whole-genome sequencing data to predict the MICs of antibiotics for 5,728 nontyphoidal Salmonella genomes collected over 15 years in the United States. Their major finding demonstrates that MICs can be predicted with an average accuracy of 95% within ±1 2-fold dilution step (confidence interval, 95% to 95%), an average very major error rate of 2.7%, and an average major error rate of 0.1%. Importantly, these models predict MICs with no a priori information about the underlying gene content or resistance phenotypes of the strains, enabling the possibility to identify AMR determinants and rapidly diagnose and prioritize antibiotic use directly from the organism sequence. Employing such tools to diagnose and limit the spread of resistance-conferring mechanisms could help ameliorate the looming antibiotic resistance crisis.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana/efectos de los fármacos , Genómica , Aprendizaje Automático , Salmonella/efectos de los fármacos , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA