Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nucleic Acids Res ; 51(15): 8237-8254, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37378428

RESUMEN

Specificity in protein-DNA recognition arises from the synergy of several factors that stem from the structural and chemical signatures encoded within the targeted DNA molecule. Here, we deciphered the nature of the interactions driving DNA recognition and binding by the bacterial transcription factor PdxR, a member of the MocR family responsible for the regulation of pyridoxal 5'-phosphate (PLP) biosynthesis. Single particle cryo-EM performed on the PLP-PdxR bound to its target DNA enabled the isolation of three conformers of the complex, which may be considered as snapshots of the binding process. Moreover, the resolution of an apo-PdxR crystallographic structure provided a detailed description of the transition of the effector domain to the holo-PdxR form triggered by the binding of the PLP effector molecule. Binding analyses of mutated DNA sequences using both wild type and PdxR variants revealed a central role of electrostatic interactions and of the intrinsic asymmetric bending of the DNA in allosterically guiding the holo-PdxR-DNA recognition process, from the first encounter through the fully bound state. Our results detail the structure and dynamics of the PdxR-DNA complex, clarifying the mechanism governing the DNA-binding mode of the holo-PdxR and the regulation features of the MocR family of transcription factors.


Asunto(s)
Proteínas Bacterianas , Factores de Transcripción , Bacterias/genética , Proteínas Bacterianas/metabolismo , ADN/metabolismo , Unión Proteica , Fosfato de Piridoxal/metabolismo , Factores de Transcripción/metabolismo , Bacillus clausii/genética
2.
Molecules ; 28(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36677890

RESUMEN

Cytochrome P450 OleP catalytic activity is strongly influenced by its structural dynamic conformational behavior. Here, we combine equilibrium-binding experiments with all-atom molecular dynamics simulations to clarify how different environments affect OleP conformational equilibrium between the open and the closed-catalytic competent-forms. Our data clearly show that at high-ionic strength conditions, the closed form is favored, and, very interestingly, different mechanisms, depending on the chemistry of the cations, can be used to rationalize such an effect.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Sales (Química) , Sistema Enzimático del Citocromo P-450/metabolismo , Conformación Proteica , Simulación de Dinámica Molecular
3.
FASEB J ; 33(2): 1787-1800, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30207799

RESUMEN

The regulation of cytochrome P450 activity is often achieved by structural transitions induced by substrate binding. We describe the conformational transition experienced upon binding by the P450 OleP, an epoxygenase involved in oleandomycin biosynthesis. OleP bound to the substrate analog 6DEB crystallized in 2 forms: one with an ensemble of open and closed conformations in the asymmetric unit and another with only the closed conformation. Characterization of OleP-6DEB binding kinetics, also using the P450 inhibitor clotrimazole, unveiled a complex binding mechanism that involves slow conformational rearrangement with the accumulation of a spectroscopically detectable intermediate where 6DEB is bound to open OleP. Data reported herein provide structural snapshots of key precatalytic steps in the OleP reaction and explain how structural rearrangements induced by substrate binding regulate activity.-Parisi, G., Montemiglio, L. C., Giuffrè, A., Macone, A., Scaglione, A., Cerutti, G., Exertier, C., Savino, C., Vallone, B. Substrate-induced conformational change in cytochrome P450 OleP.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Inhibidores de 14 alfa Desmetilasa/farmacología , Clotrimazol/farmacología , Cristalografía por Rayos X , Cromatografía de Gases y Espectrometría de Masas , Cinética , Conformación Proteica , Especificidad por Sustrato
4.
Int J Mol Sci ; 21(14)2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32679799

RESUMEN

Proteins, as a major component of organisms, are considered the preferred biomaterials for drug delivery vehicles. Hemoglobin (Hb) has been recently rediscovered as a potential drug carrier, but its use for biomedical applications still lacks extensive investigation. To further explore the possibility of utilizing Hb as a potential tumor targeting drug carrier, we examined and compared the biodistribution of Hb in healthy and lung tumor-bearing mice, using for the first time 89Zr labelled Hb in a positron emission tomography (PET) measurement. Hb displays a very high conjugation yield in its fast and selective reaction with the maleimide-deferoxamine (DFO) bifunctional chelator. The high-resolution X-ray structure of the Hb-DFO complex demonstrated that cysteine ß93 is the sole attachment moiety to the αß-protomer of Hb. The Hb-DFO complex shows quantitative uptake of 89Zr in solution as determined by radiochromatography. Injection of 0.03 mg of Hb-DFO-89Zr complex in healthy mice indicates very high radioactivity in liver, followed by spleen and lungs, whereas a threefold increased dosage results in intensification of PET signal in kidneys and decreased signal in liver and spleen. No difference in biodistribution pattern is observed between naïve and tumor-bearing mice. Interestingly, the liver Hb uptake did not decrease upon clodronate-mediated macrophage depletion, indicating that other immune cells contribute to Hb clearance. This finding is of particular interest for rapidly developing clinical immunology and projects aiming to target, label or specifically deliver agents to immune cells.


Asunto(s)
Portadores de Fármacos/farmacocinética , Sistemas de Liberación de Medicamentos , Hemoglobinas/farmacocinética , Neoplasias Pulmonares/metabolismo , Pulmón/metabolismo , Animales , Línea Celular Tumoral , Complejos de Coordinación/química , Complejos de Coordinación/farmacocinética , Deferoxamina/análogos & derivados , Deferoxamina/farmacocinética , Portadores de Fármacos/química , Femenino , Hemoglobinas/química , Humanos , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radioisótopos/química , Radioisótopos/farmacocinética , Distribución Tisular , Circonio/química , Circonio/farmacocinética
5.
Biochim Biophys Acta ; 1860(3): 465-75, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26475642

RESUMEN

BACKGROUND: OleP is a cyt P450 from Streptomyces antibioticus carrying out epoxigenation of the antibiotic oleandomycin during its biosynthesis. The timing of its reaction has not been fully clarified, doubts remain regarding its substrate and catalytic mechanism. METHODS: The crystal structure of OleP in complex with clotrimazole, an inhibitor of P450s used in therapy, was solved and the complex formation dynamics was characterized by equilibrium and kinetic binding studies and compared to ketoconazole, another azole differing for the N1-substituent. RESULTS: Clotrimazole coordinates the heme and occupies the active site. Most of the residues interacting with clotrimazole are conserved and involved in substrate binding in MycG, the P450 epoxigenase with the highest homology with OleP. Kinetic characterization of inhibitor binding revealed OleP to follow a simple bimolecular reaction, without detectable intermediates. CONCLUSIONS: Clotrimazole-bound OleP adopts an open form, held by a π-π stacking chain that fastens helices F and G and the FG loop. Affinity is affected by the interactions of the N1 substituent within the active site, given the one order of magnitude difference of the off-rate constants between clotrimazole and ketoconazole. Based on structural similarities with MycG, we propose a binding mode for both oleandomycin intermediates, that are the candidate substrates of OleP. GENERAL SIGNIFICANCE: Among P450 epoxigenases OleP is the only one that introduces an epoxide on a non-activated C­C bond. The data here presented are necessary to understand the rare chemistry carried out by OleP, to engineer it and to design more selective and potent P450-targeted drugs.


Asunto(s)
Antibacterianos/biosíntesis , Clotrimazol/química , Sistema Enzimático del Citocromo P-450/química , Oleandomicina/biosíntesis , Oxidorreductasas/química , Streptomyces antibioticus/enzimología , Dominio Catalítico , Cristalografía , Sistema Enzimático del Citocromo P-450/fisiología , Oxidorreductasas/fisiología , Estructura Secundaria de Proteína , Relación Estructura-Actividad
6.
Electromagn Biol Med ; 35(2): 126-33, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-25577980

RESUMEN

This work shows the effects of exposure to an electromagnetic field at 900 MHz on the catalytic activity of the enzymes lactoperoxidase (LPO) and horseradish peroxidase (HRP). Experimental evidence that irradiation causes conformational changes of the active sites and influences the formation and stability of the intermediate free radicals is documented by measurements of enzyme kinetics, circular dichroism spectroscopy (CD) and cyclic voltammetry.


Asunto(s)
Peroxidasa de Rábano Silvestre/metabolismo , Lactoperoxidasa/metabolismo , Microondas/efectos adversos , Dominio Catalítico/efectos de la radiación , Peroxidasa de Rábano Silvestre/química , Cinética , Lactoperoxidasa/química
7.
Structure ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38971159

RESUMEN

OleP is a bacterial cytochrome P450 involved in oleandomycin biosynthesis as it catalyzes regioselective epoxidation on macrolide intermediates. OleP has recently been reported to convert lithocholic acid (LCA) into murideoxycholic acid through a highly regioselective reaction and to unspecifically hydroxylate testosterone (TES). Since LCA and TES mainly differ by the substituent group at the C17, here we used X-ray crystallography, equilibrium binding assays, and molecular dynamics simulations to investigate the molecular basis of the diverse reactivity observed with the two steroids. We found that the differences in the structure of TES and LCA affect the capability of these molecules to directly form hydrogen bonds with N-terminal residues of OleP internal helix I. The establishment of these contacts, by promoting the bending of helix I, fosters an efficient trigger of the open-to-closed structural transition that occurs upon substrate binding to OleP and contributes to the selectivity of the subsequent monooxygenation reaction.

8.
Biochemistry ; 52(21): 3678-87, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23597312

RESUMEN

The C-12 hydroxylase EryK is a bacterial cytochrome P450, active during one of the final tailoring steps of erythromycin A (ErA) biosynthesis. Its tight substrate specificity, restricted to the metabolic intermediate ErD, leads to the accumulation in the culture broth of a shunt metabolite, ErB, that originates from the competitive action of a methyltranferase on the substrate of EryK. Although the methylation of the mycarosyl moiety represents the only difference between the two metabolites, EryK exhibits very low conversion of ErB in ErA via a parallel pathway. Given its limited antimicrobial activity and its moderate toxicity, contamination by such a byproduct decreases the yield and purity of the antibiotic. In this study, EryK has been redesigned to make it suitable for industrial application. Taking advantage of the three-dimensional structure of the enzyme in complex with ErD, three single active-site mutants of EryK (M86A, H88E, and E89L) have been designed to allow hydroxylation of the nonphysiological substrate ErB. The binding and catalytic properties of these three variants on both ErD and ErB have been analyzed. Interestingly, we found the mutation of Met 86 to Ala to yield enzymatic activity on both ErB and ErD. The three-dimensional structure of the complex of mutated EryK with ErB revealed that the mutation allows ErB to accommodate in the active site of the enzyme and to induce its closure, thus assuring the progress of the catalytic reaction. Therefore, by single mutation the fine substrate recognition, active site closure, and locking were recovered.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Cristalografía por Rayos X , Sistema Enzimático del Citocromo P-450/genética , Cromatografía de Gases y Espectrometría de Masas , Hidroxilación , Cinética , Mutagénesis Sitio-Dirigida , Especificidad por Sustrato
9.
Mol Aspects Med ; 84: 101055, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34876274

RESUMEN

Neuroglobin is expressed in vertebrate brain and belongs to a branch of the globin family that diverged early in evolution. Sequence conservation and presence in nervous cells of several taxa suggests a relevant role in the nervous system, with tight structural restraints. Twenty years after its discovery, a rich scientific literature provides convincing evidence of the involvement of neuroglobin in sustaining neuron viability in physiological and pathological conditions however, a full and conclusive picture of its specific function, or set of functions is still lacking. The difficulty of unambiguously assigning a precise mechanism and biochemical role to neuroglobin might arise from the participation to one or more cell mechanism that redundantly guarantee the functioning of the highly specialized and metabolically demanding central nervous system of vertebrates. Here we collect findings and hypotheses arising from recent biochemical, biophysical, structural, in cell and in vivo experimental work on neuroglobin, aiming at providing an overview of the most recent literature. Proteins are said to have jobs and hobbies, it is possible that, in the case of neuroglobin, evolution has selected for it more than one job, and support to cover for its occasional failings. Disentangling the mechanisms and roles of neuroglobin is thus a challenging task that might be achieved by considering data from different disciplines and experimental approaches.


Asunto(s)
Globinas , Proteínas del Tejido Nervioso , Animales , Encéfalo/metabolismo , Globinas/química , Globinas/genética , Humanos , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Neuroglobina/metabolismo , Neuronas/metabolismo
10.
ACS Chem Biol ; 17(8): 2099-2108, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35797699

RESUMEN

We produced a neuroglobin variant, namely, Ngb CDless, with the excised CDloop- and D-helix, directly joining the C- and E-helices. The CDless variant retained bis-His hexacoordination, and we investigated the role of the CDloop-D-helix unit in controlling the CO binding and structural dynamics by an integrative approach based on X-ray crystallography, rapid mixing, laser flash photolysis, resonance Raman spectroscopy, and molecular dynamics simulations. Rapid mixing and laser flash photolysis showed that ligand affinity was unchanged with respect to the wild-type protein, albeit with increased on and off constants for rate-limiting heme iron hexacoordination by the distal His64. Accordingly, resonance Raman spectroscopy highlighted a more open distal pocket in the CO complex that, in agreement with MD simulations, likely involves His64 swinging inward and outward of the distal heme pocket. Ngb CDless displays a more rigid overall structure with respect to the wild type, abolishing the structural dynamics of the CDloop-D-helix hypothesized to mediate its signaling role, and it retains ligand binding control by distal His64. In conclusion, this mutant may represent a tool to investigate the involvement of CDloop-D-helix in neuroprotective signaling in a cellular or animal model.


Asunto(s)
Neuroglobina/química , Animales , Hemo/química , Ligandos , Ratones , Neuroglobina/metabolismo
11.
Biotechnol Biofuels ; 14(1): 161, 2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294139

RESUMEN

BACKGROUND: Fungal glucose dehydrogenases (GDHs) are FAD-dependent enzymes belonging to the glucose-methanol-choline oxidoreductase superfamily. These enzymes are classified in the "Auxiliary Activity" family 3 (AA3) of the Carbohydrate-Active enZymes database, and more specifically in subfamily AA3_2, that also includes the closely related flavoenzymes aryl-alcohol oxidase and glucose 1-oxidase. Based on sequence similarity to known fungal GDHs, an AA3_2 enzyme active on glucose was identified in the genome of Pycnoporus cinnabarinus, a model Basidiomycete able to completely degrade lignin. RESULTS: In our work, substrate screening and functional characterization showed an unexpected preferential activity of this enzyme toward oligosaccharides containing a ß(1→3) glycosidic bond, with the highest efficiency observed for the disaccharide laminaribiose. Despite its sequence similarity to GDHs, we defined a novel enzymatic activity, namely oligosaccharide dehydrogenase (ODH), for this enzyme. The crystallographic structures of ODH in the sugar-free form and in complex with glucose and laminaribiose unveiled a peculiar saccharide recognition mechanism which is not shared with previously characterized AA3 oxidoreductases and accounts for ODH preferential activity toward oligosaccharides. The sugar molecules in the active site of ODH are mainly stabilized through CH-π interactions with aromatic residues rather than through hydrogen bonds with highly conserved residues, as observed instead for the fungal glucose dehydrogenases and oxidases characterized to date. Finally, three sugar-binding sites were identified on ODH external surface, which were not previously observed and might be of importance in the physiological scenario. CONCLUSIONS: Structure-function analysis of ODH is consistent with its role as an auxiliary enzyme in lignocellulose degradation and unveils yet another enzymatic function within the AA3 family of the Carbohydrate-Active enZymes database. Our findings allow deciphering the molecular determinants of substrate binding and provide insight into the physiological role of ODH, opening new perspectives to exploit biodiversity for lignocellulose transformation into fuels and chemicals.

12.
Biomolecules ; 11(12)2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34944456

RESUMEN

COVID-19 is a highly infectious disease caused by a newly emerged coronavirus (SARS-CoV-2) that has rapidly progressed into a pandemic. This unprecedent emergency has stressed the significance of developing effective therapeutics to fight the current and future outbreaks. The receptor-binding domain (RBD) of the SARS-CoV-2 surface Spike protein is the main target for vaccines and represents a helpful "tool" to produce neutralizing antibodies or diagnostic kits. In this work, we provide a detailed characterization of the native RBD produced in three major model systems: Escherichia coli, insect and HEK-293 cells. Circular dichroism, gel filtration chromatography and thermal denaturation experiments indicated that recombinant SARS-CoV-2 RBD proteins are stable and correctly folded. In addition, their functionality and receptor-binding ability were further evaluated through ELISA, flow cytometry assays and bio-layer interferometry.


Asunto(s)
COVID-19/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Animales , Línea Celular , Escherichia coli/genética , Expresión Génica , Células HEK293 , Humanos , Insectos/citología , Unión Proteica , Desnaturalización Proteica , Dominios Proteicos , Pliegue de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética
13.
Biomolecules ; 12(1)2021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-35053203

RESUMEN

Substrate binding to the cytochrome P450 OleP is coupled to a large open-to-closed transition that remodels the active site, minimizing its exposure to the external solvent. When the aglycone substrate binds, a small empty cavity is formed between the I and G helices, the BC loop, and the substrate itself, where solvent molecules accumulate mediating substrate-enzyme interactions. Herein, we analyzed the role of this cavity in substrate binding to OleP by producing three mutants (E89Y, G92W, and S240Y) to decrease its volume. The crystal structures of the OleP mutants in the closed state bound to the aglycone 6DEB showed that G92W and S240Y occupied the cavity, providing additional contact points with the substrate. Conversely, mutation E89Y induces a flipped-out conformation of this amino acid side chain, that points towards the bulk, increasing the empty volume. Equilibrium titrations and molecular dynamic simulations indicate that the presence of a bulky residue within the cavity impacts the binding properties of the enzyme, perturbing the conformational space explored by the complexes. Our data highlight the relevance of this region in OleP substrate binding and suggest that it represents a key substrate-protein contact site to consider in the perspective of redirecting its activity towards alternative compounds.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Mutación Puntual , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Sistema Enzimático del Citocromo P-450/metabolismo , Estructura Secundaria de Proteína , Especificidad por Sustrato
14.
Biochemistry ; 49(43): 9199-206, 2010 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-20845962

RESUMEN

EryK is a bacterial cytochrome P450 that catalyzes the last hydroxylation occurring during the biosynthetic pathway of erythromycin A in Streptomyces erythraeus. We report the crystal structures of EryK in complex with two widely used azole inhibitors: ketoconazole and clotrimazole. Both of these ligands use their imidazole moiety to coordinate the heme iron of P450s. Nevertheless, because of the different chemical and structural properties of their N1-substituent group, ketoconazole and clotrimazole trap EryK, respectively, in a closed and in an open conformation that resemble the two structures previously described for the ligand-free EryK. Indeed, ligands induce a distortion of the internal helix I that affects the accessibility of the binding pocket by regulating the kink of the external helix G via a network of interactions that involves helix F. The data presented thus constitute an example of how a cytochrome P450 may be selectively trapped in different conformational states by inhibitors.


Asunto(s)
Azoles/antagonistas & inhibidores , Proteínas Bacterianas/química , Sistema Enzimático del Citocromo P-450/química , Saccharopolyspora/química , Azoles/farmacología , Proteínas Bacterianas/efectos de los fármacos , Dominio Catalítico , Clotrimazol/química , Cristalografía por Rayos X , Sistema Enzimático del Citocromo P-450/efectos de los fármacos , Cetoconazol/química , Conformación Proteica/efectos de los fármacos
15.
Comput Struct Biotechnol J ; 18: 2678-2686, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33101606

RESUMEN

Protein-protein interactions regulate almost all cellular functions and rely on a fine tune of surface amino acids properties involved on both molecular partners. The disruption of a molecular association can be caused even by a single residue mutation, often leading to a pathological modification of a biochemical pathway. Therefore the evaluation of the effects of amino acid substitutions on binding, and the ad hoc design of protein-protein interfaces, is one of the biggest challenges in computational biology. Here, we present a novel strategy for computational mutation and optimization of protein-protein interfaces. Modeling the interaction surface properties using the Zernike polynomials, we describe the shape and electrostatics of binding sites with an ordered set of descriptors, making possible the evaluation of complementarity between interacting surfaces. With a Monte Carlo approach, we obtain protein mutants with controlled molecular complementarities. Applying this strategy to the relevant case of the interaction between Ferritin and Transferrin Receptor, we obtain a set of Ferritin mutants with increased or decreased complementarity. The extensive molecular dynamics validation of the method results confirms its efficacy, showing that this strategy represents a very promising approach in designing correct molecular interfaces.

16.
FEBS J ; 287(18): 4082-4097, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32034988

RESUMEN

Different murine neuroglobin variants showing structural and dynamic alterations that are associated with perturbation of ligand binding have been studied: the CD loop mutants characterized by an enhanced flexibility (Gly-loop40-48 and Gly-loop44-47 ), the F106A mutant, and the double Gly-loop44-47 /F106A mutant. Their ferric resonance Raman spectra in solution and in crystals are almost identical. In the high-frequency region, the identification of a double set of core size marker bands indicates the presence of two 6-coordinate low spin species. The resonance Raman data, together with the corresponding crystal structures, indicate the presence of two neuroglobin conformers with a reversed (A conformer) or a canonical (B conformer) heme insertion orientation. With the identification of the marker bands corresponding to each conformer, the data indicate that the B conformer increases at the expense of the A form, predominantly in the Gly-loop44-47 /F106A double mutant, as confirmed by X-ray crystallography. This is the first time that a reversed heme insertion has been identified by resonance Raman in a native 6-coordinate low-spin heme protein. This diagnostic tool could be extended to other heme proteins in order to detect heme orientational disorder, which are likely to be correlated to functionally relevant heme dynamics. DATABASE: Crystallographic structure: structural data are deposited in the Protein Data Bank under the 6RA6 PDB entry.


Asunto(s)
Hemo/química , Neuroglobina/química , Conformación Proteica , Espectrometría Raman/métodos , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Hemo/metabolismo , Ratones , Neuroglobina/genética , Neuroglobina/metabolismo , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido
17.
Biomolecules ; 10(10)2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33036250

RESUMEN

The cytochrome P450 OleP catalyzes the epoxidation of aliphatic carbons on both the aglycone 8.8a-deoxyoleandolide (DEO) and the monoglycosylated L-olivosyl-8.8a-deoxyoleandolide (L-O-DEO) intermediates of oleandomycin biosynthesis. We investigated the substrate versatility of the enzyme. X-ray and equilibrium binding data show that the aglycone DEO loosely fits the OleP active site, triggering the closure that prepares it for catalysis only on a minor population of enzyme. The open-to-closed state transition allows solvent molecules to accumulate in a cavity that forms upon closure, mediating protein-substrate interactions. In silico docking of the monoglycosylated L-O-DEO in the closed OleP-DEO structure shows that the L-olivosyl moiety can be hosted in the same cavity, replacing solvent molecules and directly contacting structural elements involved in the transition. X-ray structures of aglycone-bound OleP in the presence of L-rhamnose confirm the cavity as a potential site for sugar binding. All considered, we propose L-O-DEO as the optimal substrate of OleP, the L-olivosyl moiety possibly representing the molecular wedge that triggers a more efficient structural response upon substrate binding, favoring and stabilizing the enzyme closure before catalysis. OleP substrate versatility is supported by structural solvent molecules that compensate for the absence of a glycosyl unit when the aglycone is bound.


Asunto(s)
Sistema Enzimático del Citocromo P-450/química , Lactonas/química , Catálisis , Cristalografía por Rayos X , Dominios Proteicos , Ramnosa/química , Relación Estructura-Actividad , Especificidad por Sustrato
18.
Biophys Chem ; 254: 106242, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31419721

RESUMEN

The transferrin receptor 1 (TfR1) is one of the key regulators of iron homeostasis for most higher organisms. It mediates cellular iron import through a constitutive clathrin-dependent endocytosis mechanism and by recruiting iron- regulator proteins as transferrin, Hereditary Hemochromatosis factor (HFE) and serum ferritin in response to cellular demand. The receptor is also opportunistically exploited by several viruses and the malaria parasite as a preferential door for cell invasion. In this review, we analyze the structural information available for TfR1 and all its functional complexes to figure out how structural signals in a single receptor can guide the recognition of multiple ligands and how the conservation of key residues in TfR1 might have a role in iron uptake and cell infection.


Asunto(s)
Ligandos , Receptores de Transferrina/química , Animales , Sitios de Unión , Humanos , Hierro/química , Hierro/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Receptores de Transferrina/metabolismo
19.
Nat Commun ; 10(1): 1121, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30850661

RESUMEN

Human transferrin receptor 1 (CD71) guarantees iron supply by endocytosis upon binding of iron-loaded transferrin and ferritin. Arenaviruses and the malaria parasite exploit CD71 for cell invasion and epitopes on CD71 for interaction with transferrin and pathogenic hosts were identified. Here, we provide the molecular basis of the CD71 ectodomain-human ferritin interaction by determining the 3.9 Å resolution single-particle cryo-electron microscopy structure of their complex and by validating our structural findings in a cellular context. The contact surfaces between the heavy-chain ferritin and CD71 largely overlap with arenaviruses and Plasmodium vivax binding regions in the apical part of the receptor ectodomain. Our data account for transferrin-independent binding of ferritin to CD71 and suggest that select pathogens may have adapted to enter cells by mimicking the ferritin access gate.


Asunto(s)
Antígenos CD/química , Apoferritinas/química , Proteínas Protozoarias/química , Receptores de Transferrina/química , Receptores Virales/química , Transferrina/química , Proteínas del Envoltorio Viral/química , Antígenos CD/genética , Antígenos CD/metabolismo , Apoferritinas/genética , Apoferritinas/metabolismo , Arenavirus del Nuevo Mundo/genética , Arenavirus del Nuevo Mundo/metabolismo , Sitios de Unión , Clonación Molecular , Microscopía por Crioelectrón , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células HeLa , Proteína de la Hemocromatosis/química , Proteína de la Hemocromatosis/genética , Proteína de la Hemocromatosis/metabolismo , Humanos , Plasmodium vivax/genética , Plasmodium vivax/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo , Receptores Virales/genética , Receptores Virales/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Transferrina/genética , Transferrina/metabolismo , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo
20.
Sci Rep ; 9(1): 5326, 2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30926858

RESUMEN

Neuroglobin (Ngb) is predominantly expressed in neurons of the central and peripheral nervous systems and it clearly seems to be involved in neuroprotection. Engineering Ngb to observe structural and dynamic alterations associated with perturbation in ligand binding might reveal important structural determinants, and could shed light on key features related to its mechanism of action. Our results highlight the relevance of the CD loop and of Phe106 as distal and proximal controls involved in ligand binding in murine neuroglobin. We observed the effects of individual and combined mutations of the CD loop and Phe106 that conferred to Ngb higher CO binding velocities, which we correlate with the following structural observations: the mutant F106A shows, upon CO binding, a reduced heme sliding hindrance, with the heme present in a peculiar double conformation, whereas in the CD loop mutant "Gly-loop", the original network of interactions between the loop and the heme was abolished, enhancing binding via facilitated gating out of the distal His64. Finally, the double mutant, combining both mutations, showed a synergistic effect on CO binding rates. Resonance Raman spectroscopy and MD simulations support our findings on structural dynamics and heme interactions in wild type and mutated Ngbs.


Asunto(s)
Neuroglobina/química , Neuroglobina/metabolismo , Sitios de Unión , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Hemo/química , Hemo/metabolismo , Humanos , Cinética , Ligandos , Modelos Moleculares , Conformación Molecular , Mutación , Neuroglobina/genética , Unión Proteica , Relación Estructura-Actividad , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA