Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Environ Manage ; 218: 88-94, 2018 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-29674161

RESUMEN

Ni-based quaternary disk catalysts were manufactured for low-temperature CO2 methanation reactions, and the reaction activity was examined with respect to the thermal treatment conditions. By applying varying reduction and combustion treatments, the same catalysts were compared, and the Ni oxidation conditions and physical features were confirmed through X-Ray diffraction, scanning electron microscopy, and energy dispersive X-ray analyses. In addition, oxygen adsorption/desorption changes were measured by temperature-programmed reduction after pre-treating with oxygen and hydrogen. The reduction treatment catalyst showed a conversion of 20% at 280 °C, and the 70% calcined catalyst did not form a NiO crystalloid. The activation of the catalyst increased because of NiO movement on the catalyst surface, which enabled easy transformation to metallic Ni. The prepared catalyst is a highly reactive, yet stable, candidate for practical catalytic CO2 methanation.


Asunto(s)
Dióxido de Carbono , Metano , Temperatura , Catálisis , Oxidación-Reducción
2.
J Environ Manage ; 213: 541-548, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29478848

RESUMEN

In this study, a magnetically separable, highly active, and recyclable photocatalyst was synthesized by physico-chemical incorporation of Ag, TiO2, and Fe3O4 into one structure. The physical and chemical properties of the catalysts were evaluated by X-ray diffraction, X-ray fluorescence spectrometry, scanning electron microscopy, field emission transmission electron microscopy, energy dispersive X-ray spectroscopy, and diffuse reflectance spectroscopy. The Ag-supported magnetic TiO2 composite demonstrated desirable properties and features such as a narrow band gap of 1.163 eV, modifiable structure, and high degradation efficiency. The activity and durability of the synthesized photocatalyst in the degradation of methyl orange (MO) in aqueous solutions under visible light irradiation and different experimental conditions were evaluated and compared to those of commercial TiO2 and Ag/TiO2 composites. It was found that the synthesized composite showed a much higher MO photodegradation efficiency than the other composites under visible light irradiation. Moreover, it exhibited a high photocatalytic activity and was recoverable and durable; its photocatalytic efficiency in MO removal was consistently higher than 93.1% after five reuses without any evident signs of deactivation. Thus, the developed photocatalyst is a very promising material for practical applications in environmental pollution remediation.


Asunto(s)
Contaminantes Ambientales/química , Fotólisis , Titanio , Catálisis , Contaminantes Ambientales/aislamiento & purificación , Magnetismo , Plata , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA