Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38698077
2.
Mol Cell ; 75(6): 1203-1217.e5, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31494035

RESUMEN

In response to foreign and endogenous double-stranded RNA (dsRNA), protein kinase R (PKR) and ribonuclease L (RNase L) reprogram translation in mammalian cells. PKR inhibits translation initiation through eIF2α phosphorylation, which triggers stress granule (SG) formation and promotes translation of stress responsive mRNAs. The mechanisms of RNase L-driven translation repression, its contribution to SG assembly, and its regulation of dsRNA stress-induced mRNAs are unknown. We demonstrate that RNase L drives translational shut-off in response to dsRNA by promoting widespread turnover of mRNAs. This alters stress granule assembly and reprograms translation by allowing translation of mRNAs resistant to RNase L degradation, including numerous antiviral mRNAs such as interferon (IFN)-ß. Individual cells differentially activate dsRNA responses revealing variation that can affect cellular outcomes. This identifies bulk mRNA degradation and the resistance of antiviral mRNAs as the mechanism by which RNase L reprograms translation in response to dsRNA.


Asunto(s)
Reprogramación Celular , Endorribonucleasas/metabolismo , Interferón beta/biosíntesis , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , eIF-2 Quinasa/metabolismo , Células A549 , Endorribonucleasas/genética , Células HEK293 , Humanos , Interferón beta/genética , Estabilidad del ARN , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , ARN Mensajero/genética , eIF-2 Quinasa/genética
3.
Biochem Soc Trans ; 50(6): 1715-1724, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36484689

RESUMEN

Maintenance of proteostasis is of utmost importance to cellular viability and relies on the coordination of many post-transcriptional processes to respond to stressful stimuli. Stress granules (SGs) are RNA-protein condensates that form after translation initiation is inhibited, such as during the integrated stress response (ISR), and may facilitate cellular adaptation to stress. The ribosome-associated quality control (RQC) pathway is a critical translation monitoring system that recognizes aberrant mRNAs encoding potentially toxic nascent peptides to target them for degradation. Both SG regulation and the RQC pathway are directly associated with translation regulation, thus it is of no surprise recent developments have demonstrated a connection between them. VCP's function in the stress activated RQC pathway, ribosome collisions activating the ISR, and the regulation of the 40S ribosomal subunit by canonical SG proteins during the RQC all connect SGs to the RQC pathway. Because mutations in genes that are involved in both SG and RQC regulation are associated with degenerative and neurological diseases, understanding the coordination and interregulation of SGs and RQC may shed light on disease mechanisms. This minireview will highlight recent advances in understanding how SGs and the RQC pathway interact in health and disease contexts.


Asunto(s)
Biosíntesis de Proteínas , Gránulos de Estrés , Ubiquitinación , Ribosomas/metabolismo , Proteínas/metabolismo , Control de Calidad
4.
RNA ; 24(6): 841-852, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29632131

RESUMEN

Mutations in eIF2B genes cause vanishing white matter disease (VWMD), a fatal leukodystrophy that can manifest following physical trauma or illness, conditions that activate the integrated stress response (ISR). EIF2B is the guanine exchange factor for eIF2, facilitating ternary complex formation and translation initiation. During the ISR, eIF2α is phosphorylated and inhibits eIF2B, causing global translation suppression and stress-induced gene translation, allowing stress adaptation and recovery. We demonstrate that VWMD patient cells hypersuppress translation during the ISR caused by acute ER stress, delaying stress-induced gene expression and interrupting a negative feedback loop that allows translational recovery by GADD34-mediated dephosphorylation of phospho-eIF2α. Thus, cells from VWMD patients undergo a prolonged state of translational hyperrepression and fail to recover from stress. We demonstrate that small molecules targeting eIF2B or the eIF2α kinase PERK rescue translation defects in patient cells. Therefore, defects in the ISR could contribute to white matter loss in VWMD.


Asunto(s)
Factor 2B Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/genética , Leucoencefalopatías/genética , Leucoencefalopatías/patología , Mutación , Biosíntesis de Proteínas , Estrés Fisiológico , Adulto , Estudios de Casos y Controles , Células Cultivadas , Femenino , Humanos , Linfocitos/metabolismo , Linfocitos/patología , Masculino , Fosforilación , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo , Adulto Joven
5.
PLoS Pathog ; 11(3): e1004708, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25747802

RESUMEN

We demonstrate that both Hepatitis C virus (HCV) and Bovine Viral Diarrhea virus (BVDV) contain regions in their 5' UTRs that stall and repress the enzymatic activity of the cellular 5'-3' exoribonuclease XRN1, resulting in dramatic changes in the stability of cellular mRNAs. We used biochemical assays, virus infections, and transfection of the HCV and BVDV 5' untranslated regions in the absence of other viral gene products to directly demonstrate the existence and mechanism of this novel host-virus interaction. In the context of HCV infection, we observed globally increased stability of mRNAs resulting in significant increases in abundance of normally short-lived mRNAs encoding a variety of relevant oncogenes and angiogenesis factors. These findings suggest that non-coding regions from multiple genera of the Flaviviridae interfere with XRN1 and impact post-transcriptional processes, causing global dysregulation of cellular gene expression which may promote cell growth and pathogenesis.


Asunto(s)
Regiones no Traducidas 5' , Virus de la Diarrea Viral Bovina/patogenicidad , Exorribonucleasas/metabolismo , Hepacivirus/patogenicidad , Interacciones Huésped-Parásitos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Estabilidad del ARN/genética , Replicación Viral/genética , Regiones no Traducidas 5'/genética , Animales , Western Blotting , Bovinos , Línea Celular , Virus de la Diarrea Viral Bovina/genética , Hepacivirus/genética , Humanos , Reacción en Cadena de la Polimerasa , ARN Mensajero , Transfección
6.
RNA ; 18(11): 2029-40, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23006624

RESUMEN

All arthropod-borne flaviviruses generate a short noncoding RNA (sfRNA) from the viral 3' untranslated region during infection due to stalling of the cellular 5'-to-3' exonuclease XRN1. We show here that formation of sfRNA also inhibits XRN1 activity. Cells infected with Dengue or Kunjin viruses accumulate uncapped mRNAs, decay intermediates normally targeted by XRN1. XRN1 repression also resulted in the increased overall stability of cellular mRNAs in flavivirus-infected cells. Importantly, a mutant Kunjin virus that cannot form sfRNA but replicates to normal levels failed to affect host mRNA stability or XRN1 activity. Expression of sfRNA in the absence of viral infection demonstrated that sfRNA formation was directly responsible for the stabilization of cellular mRNAs. Finally, numerous cellular mRNAs were differentially expressed in an sfRNA-dependent fashion in a Kunjin virus infection. We conclude that flaviviruses incapacitate XRN1 during infection and dysregulate host mRNA stability as a result of sfRNA formation.


Asunto(s)
Aedes/virología , Virus del Dengue/genética , Exorribonucleasas/antagonistas & inhibidores , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , ARN Mensajero/química , ARN no Traducido/química , ARN Viral/química , Regiones no Traducidas 3' , Aedes/citología , Animales , Línea Celular , Cricetinae , Virus del Dengue/fisiología , Exorribonucleasas/química , Exorribonucleasas/metabolismo , Regulación de la Expresión Génica , Semivida , Interacciones Huésped-Patógeno , Humanos , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Estabilidad del ARN , ARN Mensajero/metabolismo , ARN no Traducido/metabolismo , ARN no Traducido/fisiología , ARN Viral/metabolismo , ARN Viral/fisiología , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/química , Transcriptoma , Virus del Nilo Occidental/genética , Virus del Nilo Occidental/fisiología
7.
Antioxid Redox Signal ; 39(4-6): 390-409, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37183403

RESUMEN

Significance: Stress granules (SGs) are biomolecular condensates that form upon global translation suppression during stress. SGs are enriched in translation factors and messenger RNAs (mRNAs), which they may sequester away from the protein synthesis machinery. While this is hypothesized to remodel the functional transcriptome during stress, it remains unclear whether SGs are a cause, or simply a consequence, of translation repression. Understanding the function of SGs is particularly important because they are implicated in numerous diseases including viral infections, cancer, and neurodegeneration. Recent Advances: We synthesize recent SG research spanning biological scales, from observing single proteins and mRNAs within one cell to measurements of the entire transcriptome or proteome of SGs in a cell population. We use the emerging understanding from these studies to suggest that SGs likely have less impact on global translation, but instead may strongly influence the translation of individual mRNAs localized to them. Critical Issues: Development of a unified model that links stress-induced RNA-protein condensation to regulation of downstream gene expression holds promise for understanding the mechanisms of cellular resilience. Future Directions: Therefore, upcoming research should clarify what influence SGs exert on translation at all scales as well as the molecular mechanisms that enable this. The resulting knowledge will be required to drive discovery in how SGs allow organisms to adapt to challenges and support health or go awry and lead to disease. Antioxid. Redox Signal. 39, 390-409.


Asunto(s)
Neoplasias , Gránulos de Estrés , Humanos , ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estrés Fisiológico
8.
Methods Mol Biol ; 2428: 63-73, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35171473

RESUMEN

The attenuation of global translation is a critical outcome of the integrated stress response (ISR). Consequently, it is important to effectively detect and measure protein synthesis in studies seeking to evaluate the ISR. This chapter details two methods, surface sensing of translation (SUnSET) and fluorescent noncanonical amino acid tagging (FUNCAT), to measure global translation activity in individual cells using fluorescence microscopy as a read-out. Detecting bulk translation activity in single cells is advantageous for the concurrent observation of newly synthesized proteins and other cellular structures and to identify differences in translation activity among individuals within a population of cells.


Asunto(s)
Biosíntesis de Proteínas , Proteínas , Aminoácidos/metabolismo , Animales , Humanos , Microscopía Fluorescente , Proteínas/metabolismo , Puromicina
9.
Wiley Interdiscip Rev RNA ; 13(3): e1689, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34463036

RESUMEN

The integrated stress response (ISR) is a conserved mechanism by which eukaryotic cells remodel gene expression to adapt to intrinsic and extrinsic stressors rapidly and reversibly. The ISR is initiated when stress-activated protein kinases phosphorylate the major translation initiation factor eukaryotic translation initiation factor 2ɑ (eIF2ɑ), which globally suppresses translation initiation activity and permits the selective translation of stress-induced genes including important transcription factors such as activating transcription factor 4 (ATF4). Translationally repressed messenger RNAs (mRNAs) and noncoding RNAs assemble into cytoplasmic RNA-protein granules and polyadenylated RNAs are concomitantly stabilized. Thus, regulated changes in mRNA translation, stability, and localization to RNA-protein granules contribute to the reprogramming of gene expression that defines the ISR. We discuss fundamental mechanisms of RNA regulation during the ISR and provide an overview of a growing class of genetic disorders associated with mutant alleles of key translation factors in the ISR pathway. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease Translation > Translation Regulation RNA in Disease and Development > RNA in Development.


Asunto(s)
Factor 2 Eucariótico de Iniciación , Transducción de Señal , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Fosforilación , Biosíntesis de Proteínas , Proteínas/metabolismo , ARN Mensajero/metabolismo , Estrés Fisiológico/genética
11.
J Cell Biol ; 219(8)2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32520986

RESUMEN

Stress granules are dynamic assemblies of proteins and nontranslating RNAs that form when translation is inhibited in response to diverse stresses. Defects in ubiquitin-proteasome system factors including valosin-containing protein (VCP) and the proteasome impact the kinetics of stress granule induction and dissolution as well as being implicated in neuropathogenesis. However, the impacts of dysregulated proteostasis on mRNA regulation and stress granules are not well understood. Using single mRNA imaging, we discovered ribosomes stall on some mRNAs during arsenite stress, and the release of transcripts from stalled ribosomes for their partitioning into stress granules requires the activities of VCP, components of the ribosome-associated quality control (RQC) complex, and the proteasome. This is an unexpected contribution of the RQC system in releasing mRNAs from translation under stress, thus identifying a new type of stress-activated RQC (saRQC) distinct from canonical RQC pathways in mRNA substrates, cellular context, and mRNA fate.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Neoplasias/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Arsenitos/farmacología , Gránulos Citoplasmáticos/efectos de los fármacos , Gránulos Citoplasmáticos/genética , Regulación Neoplásica de la Expresión Génica , Células HeLa , Humanos , Cinética , Neoplasias/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Transporte de Proteínas , Proteostasis , ARN Mensajero/genética , Ribosomas/efectos de los fármacos , Ribosomas/genética , Compuestos de Sodio/farmacología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteína que Contiene Valosina/genética , Proteína que Contiene Valosina/metabolismo
12.
Nat Cell Biol ; 21(2): 162-168, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30664789

RESUMEN

Ribonucleoprotein (RNP) granules are non-membrane-bound organelles that have critical roles in the stress response1,2, maternal messenger RNA storage3, synaptic plasticity4, tumour progression5,6 and neurodegeneration7-9. However, the dynamics of their mRNA components within and near the granule surface remain poorly characterized, particularly in the context and timing of mRNAs exiting translation. Herein, we used multicolour single-molecule tracking to quantify the precise timing and kinetics of single mRNAs as they exit translation and enter RNP granules during stress. We observed single mRNAs interacting with stress granules and P-bodies, with mRNAs moving bidirectionally between them. Although translating mRNAs only interact with RNP granules dynamically, non-translating mRNAs can form stable, and sometimes rigid, associations with RNP granules with stability increasing with both mRNA length and granule size. Live and fixed cell imaging demonstrated that mRNAs can extend beyond the protein surface of a stress granule, which may facilitate interactions between RNP granules. Thus, the recruitment of mRNPs to RNP granules involves dynamic, stable and extended interactions affected by translation status, mRNA length and granule size that collectively regulate RNP granule dynamics.


Asunto(s)
Rastreo Celular/métodos , Gránulos Citoplasmáticos/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Ribonucleoproteínas/metabolismo , Línea Celular Tumoral , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Cinética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Modelos Biológicos , Unión Proteica , ARN Mensajero/genética , Ribonucleoproteínas/genética , Estrés Fisiológico , Factores de Tiempo , Proteína Fluorescente Roja
13.
Sci Rep ; 8(1): 12264, 2018 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-30115954

RESUMEN

Eukaryotic cells respond to stress and changes in the environment in part by repressing translation and forming cytoplasmic assemblies called stress granules and P-bodies, which harbor non-translating mRNAs and proteins. A third, but poorly understood, assembly called the eIF2B body can form and contains the eIF2B complex, an essential guanine exchange factor for the translation initiation factor eIF2. Hypomorphic EIF2B alleles can lead to Vanishing White Matter Disease (VWMD), a leukodystrophy that causes progressive white matter loss. An unexplored question is how eIF2B body formation is controlled and whether VWMD alleles in EIF2B alter the formation of eIF2B bodies, stress granules, or P-bodies. To examine these issues, we assessed eIF2B body, stress granule, and P-body induction in wild-type yeast cells and cells carrying VWMD alleles in the EIF2B2 (GCD7) and EIF2B5 (GCD6) subunits of eIF2B. We demonstrate eIF2B bodies are rapidly and reversibly formed independently of stress granules during acute glucose deprivation. VWMD mutations had diverse effects on stress-induced assemblies with some alleles altering eIF2B bodies, and others leading to increased P-body formation. Moreover, some VWMD-causing mutations in GCD7 caused hyper-sensitivity to chronic GCN2 activation, consistent with VWMD mutations causing hyper-sensitivity to eIF2α phosphorylation and thereby impacting VWMD pathogenesis.


Asunto(s)
Citosol/metabolismo , Factor 2B Eucariótico de Iniciación/metabolismo , Factor 2B Eucariótico de Iniciación/genética , Glucosa/deficiencia , Leucoencefalopatías/genética , Mutación , Estrés Oxidativo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
14.
Trends Mol Med ; 24(6): 575-589, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29716790

RESUMEN

A key site of translation control is the phosphorylation of the eukaryotic translation initiation factor 2α (eIF2α), which reduces the rate of GDP to GTP exchange by eIF2B, leading to altered translation. The extent of eIF2α phosphorylation within neurons can alter synaptic plasticity. Phosphorylation of eIF2α is triggered by four stress-responsive kinases, and as such eIF2α is often phosphorylated during neurological perturbations or disease. Moreover, in some cases decreasing eIF2α phosphorylation mitigates neurodegeneration, suggesting that this could be a therapeutic target. Mutations in the γ subunit of eIF2, the guanine exchange factor eIF2B, an eIF2α phosphatase, or in two eIF2α kinases can cause disease in humans, demonstrating the importance of proper regulation of eIF2α phosphorylation for health.


Asunto(s)
Factor 2 Eucariótico de Iniciación/metabolismo , Regulación de la Expresión Génica , Enfermedades del Sistema Nervioso/etiología , Enfermedades del Sistema Nervioso/metabolismo , Neuronas/metabolismo , Animales , Biomarcadores , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Mutación , Plasticidad Neuronal/efectos de los fármacos , Fosforilación/efectos de los fármacos
15.
Virology ; 475: 219-29, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25514423

RESUMEN

Flaviviruses are 5' capped positive-stranded RNA viruses that replicate their genomes within endoplasmic reticulum-derived vesicles. Flaviviruses are well known to induce oxidative stress late in infection but it is unknown if oxidative stress plays a positive role in the viral RNA replication cycle. We therefore examined how oxidation affects flavivirus RNA replication. We found that antioxidant treatment reduced virus production, reduced the viral positive-to-negative strand RNA ratio, and resulted in the accumulation of uncapped positive-sense viral RNAs. Treatment of the NS5 RNA capping enzyme in vitro with oxidizing agents enhanced guanylyltransferase activity, indicating that the guanylyltransferase function of the flavivirus NS5 RNA capping enzyme is activated by oxidative conditions. Antioxidant treatment also reduced alphavirus RNA replication and protein expression while enhancing nsP1 capping activity. These findings suggest that RNA viruses may utilize oxidative stress induced during infection to help temporally control genome RNA capping and genome replication.


Asunto(s)
Genoma Viral/fisiología , Estrés Oxidativo/fisiología , Caperuzas de ARN/metabolismo , Virus Sindbis/metabolismo , Virus del Nilo Occidental/genética , Aedes , Animales , Línea Celular , Cricetinae , Regulación Viral de la Expresión Génica/fisiología , Humanos , Nucleotidiltransferasas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Virus Sindbis/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
16.
Virology ; 485: 322-9, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26331679

RESUMEN

Productive arbovirus infections require mechanisms to suppress or circumvent the cellular RNA interference (RNAi) pathway, a major antiviral response in mosquitoes. In this study, we demonstrate that two flaviviruses, Dengue virus and Kunjin virus, significantly repress siRNA-mediated RNAi in infected human cells as well as during infection of the mosquito vector Culex quinquefasciatus. Arthropod-borne flaviviruses generate a small structured non-coding RNA from the viral 3' UTR referred to as sfRNA. Analysis of infections with a mutant Kunjin virus that is unable to generate appreciable amounts of the major sfRNA species indicated that RNAi suppression was associated with the generation of the non-coding sfRNA. Co-immunoprecipitation of sfRNA with RNAi mediators Dicer and Ago2 suggest a model for RNAi suppression. Collectively, these data help to establish a clear role for sfRNA in RNAi suppression and adds to the emerging impact of viral long non-coding RNAs in modulating aspects of anti-viral immune processes.


Asunto(s)
Flavivirus/genética , Interferencia de ARN , ARN Pequeño no Traducido/genética , ARN Viral/genética , Aedes , Animales , Proteínas Argonautas/metabolismo , Línea Celular , Células Cultivadas , Virus del Dengue/genética , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Humanos , ARN Interferente Pequeño/genética , Ribonucleasa III/metabolismo , Virus del Nilo Occidental/genética
17.
Elife ; 3: e01892, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24692447

RESUMEN

Dengue virus is a growing global health threat. Dengue and other flaviviruses commandeer the host cell's RNA degradation machinery to generate the small flaviviral RNA (sfRNA), a noncoding RNA that induces cytopathicity and pathogenesis. Host cell exonuclease Xrn1 likely loads on the 5' end of viral genomic RNA and degrades processively through ∼10 kB of RNA, halting near the 3' end of the viral RNA. The surviving RNA is the sfRNA. We interrogated the architecture of the complete Dengue 2 sfRNA, identifying five independently-folded RNA structures, two of which quantitatively confer Xrn1 resistance. We developed an assay for real-time monitoring of Xrn1 resistance that we used with mutagenesis and RNA folding experiments to show that Xrn1-resistant RNAs adopt a specific fold organized around a three-way junction. Disrupting the junction's fold eliminates the buildup of disease-related sfRNAs in human cells infected with a flavivirus, directly linking RNA structure to sfRNA production. DOI: http://dx.doi.org/10.7554/eLife.01892.001.


Asunto(s)
Virus del Dengue/genética , Virus del Dengue/patogenicidad , Exorribonucleasas/metabolismo , Estabilidad del ARN , ARN Viral/genética , Regiones no Traducidas 3' , Secuencia de Bases , Exorribonucleasas/genética , Cinética , Datos de Secuencia Molecular , Mutación , Conformación de Ácido Nucleico , ARN Viral/química , ARN Viral/metabolismo , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad
18.
Science ; 344(6181): 307-10, 2014 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-24744377

RESUMEN

Flaviviruses are emerging human pathogens and worldwide health threats. During infection, pathogenic subgenomic flaviviral RNAs (sfRNAs) are produced by resisting degradation by the 5'→3' host cell exonuclease Xrn1 through an unknown RNA structure-based mechanism. Here, we present the crystal structure of a complete Xrn1-resistant flaviviral RNA, which contains interwoven pseudoknots within a compact structure that depends on highly conserved nucleotides. The RNA's three-dimensional topology creates a ringlike conformation, with the 5' end of the resistant structure passing through the ring from one side of the fold to the other. Disruption of this structure prevents formation of sfRNA during flaviviral infection. Thus, sfRNA formation results from an RNA fold that interacts directly with Xrn1, presenting the enzyme with a structure that confounds its helicase activity.


Asunto(s)
Virus de la Encefalitis del Valle Murray/genética , Conformación de Ácido Nucleico , ARN Viral/química , Emparejamiento Base , Secuencia de Bases , Cristalografía por Rayos X , Virus de la Encefalitis del Valle Murray/patogenicidad , Exorribonucleasas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , ARN Viral/genética , ARN Viral/metabolismo
19.
Cell Rep ; 5(4): 909-17, 2013 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-24210824

RESUMEN

The impact of RNA viruses on the posttranscriptional regulation of cellular gene expression is unclear. Sindbis virus causes a dramatic relocalization of the cellular HuR protein from the nucleus to the cytoplasm in infected cells. This is to the result of the expression of large amounts of viral RNAs that contain high-affinity HuR binding sites in their 3' UTRs effectively serving as a sponge for the HuR protein. Sequestration of HuR by Sindbis virus is associated with destabilization of cellular mRNAs that normally bind HuR and rely on it to regulate their expression. Furthermore, significant changes can be observed in nuclear alternative polyadenylation and splicing events on cellular pre-mRNAs as a result of sequestration of HuR protein by the 3' UTR of transcripts of this cytoplasmic RNA virus. These studies suggest a molecular mechanism of virus-host interaction that probably has a significant impact on virus replication, cytopathology, and pathogenesis.


Asunto(s)
Regiones no Traducidas 3'/genética , Proteínas ELAV/metabolismo , Estabilidad del ARN/genética , ARN Mensajero/química , ARN Viral/genética , Empalme Alternativo/genética , Animales , Sitios de Unión/genética , Línea Celular , Núcleo Celular/genética , Cricetinae , Citoplasma/genética , Regulación de la Expresión Génica/genética , Células HEK293 , Humanos , Poliadenilación/genética , Procesamiento Postranscripcional del ARN/genética , ARN Viral/biosíntesis , Virus Sindbis/genética , Replicación Viral/genética
20.
Methods Mol Biol ; 941: 171-80, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23065561

RESUMEN

RNAs containing a variety of terminal and internal modifications can be produced using bacteriophage polymerases often with a few simple adjustments to standard transcription protocols. RNAs containing a single phosphate or a cap structure at their 5' ends can readily be generated either co-transcriptionally or through enzymatic treatments of transcription products. Likewise, a variety of modified bases, including fluorescent or biotinylated species, can be effectively incorporated co-transcriptionally. The key to effective co-transcriptional incorporation lies in determining the efficiency of incorporation of modified base relative to its standard counterpart. Finally, an approach to place a poly(A) tail at the exact 3' end of a desired transcription product is presented. Collectively, these protocols allow one to synthesize RNAs with a variety of modifications to serve as versatile molecules to analyze biological questions.


Asunto(s)
Técnicas Genéticas , Transcripción Genética , Secuencia de Bases , Poli A/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA