Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nanotechnology ; 34(50)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37683622

RESUMEN

Highly stable and environmentally friendly nitrogen-doped graphite quantum dots consisting of ∼12 layers of graphene, average diameter of ∼7.3 nm, prepared by atmospheric pressure microplasma are reported to have blue emission due to surface states created by nitrogen doping (9 atomic%) and reaction with oxygen. The low-temperature synthesis method requires simple precursors in water, with no annealing or filtration, producing crystalline disc-shaped quantum dots with ∼68% photoluminescence emission quantum yield at 420 nm excitation and that have shown stability for more than one month after the synthesis. The nitrogen doping in the quantum dots mainly occurs in graphitic core as substituted type of doping (63-67 atomic%) and the amount of doping is sufficient to create emissive states without impacting the core structure. The optical and chemical properties do not undergo serious retardation even with re-dispersion suggesting easy applicability for cellular imaging or optoelectronics.

2.
Sens Actuators B Chem ; 365: 131906, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35463481

RESUMEN

As viruses constantly change due to mutation, variants are expected to emerge demanding development of sensors capable of detecting multiple variants using one single sensor platform. Herein, we report the integration of a synthetic binder against SARS-CoV-2 with a nanoplasmonic-based sensing technology, which enables the successful detection of spike proteins of Alpha, Beta and Gamma variants of SARS CoV-2. The recognition event is achieved by specific nanostructured molecularly imprinted polymers (nanoMIPs), developed against a region of the receptor binding domain (RBD) of the SARS CoV-2 spike protein. The transduction is based on the principle of localized surface plasmon resonance (LSPR) associated with silver nanostructures. The nanoMIPs-functionalised LSPR sensor allows for the detection of all 3 protein variants with a limit of detection of 9.71 fM, 7.32 fM and 8.81 pM using wavelength shifts respectively for Alpha, Beta and Gamma spike protein variants. This can be achieved within 30 min from the sample collection, both from blood and using nasal swab, thus making this sensor suitable for rapid detection of COVID-19. Additionally, the turnaround time for sensor development and validation can be completed in less than 8 weeks, making it suitable for addressing future pandemic needs without the requirement for biological binding agents, which is one of the bottlenecks to the supply chain in diagnostic devices.

3.
Nano Lett ; 16(8): 5228-34, 2016 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-27454612

RESUMEN

We report deterministic selection of polarization variant in bismuth BiFeO3 nanoislands via a two-step scanning probe microscopy procedure. The polarization orientation in a nanoisland is toggled to the desired variant after a reset operation by scanning a conductive atomic force probe in contact over the surface while a bias is applied. The final polarization variant is determined by the direction of the inhomogeneous in-plane trailing field associated with the moving probe tip. This work provides the framework for better control of switching in rhombohedral ferroelectrics and for a deeper understanding of exchange coupling in multiferroic nanoscale heterostructures toward the realization of magnetoelectric devices.

4.
Nano Lett ; 13(8): 3884-9, 2013 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-23902288

RESUMEN

Large areas of perfectly ordered magnetic CoFe2O4 nanopillars embedded in a ferroelectric BiFeO3 matrix were successfully fabricated via a novel nucleation-induced self-assembly process. The nucleation centers of the magnetic pillars are induced before the growth of the composite structure using anodic aluminum oxide (AAO) and lithography-defined gold membranes as hard mask. High structural quality and good functional properties were obtained. Magneto-capacitance data revealed extremely low losses and magneto-electric coupling of about 0.9 µC/cmOe. The present fabrication process might be relevant for inducing ordering in systems based on phase separation, as the nucleation and growth is a rather general feature of these systems.

5.
ACS Nano ; 17(21): 21506-21517, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37877266

RESUMEN

Mechanistic probing of surface potential changes arising from dynamic charge transport is the key to understanding and engineering increasingly complex nanoscale materials and devices. Spatiotemporal averaging in conventional heterodyne detection-based Kelvin probe force microscopy (KPFM) inherently limits its time resolution, causing an irretrievable loss of transient response and higher-order harmonics. Addressing this, we report a wavelet transform (WT)-based methodology capable of quantifying the sub-ms charge dynamics and probing the elusive transient response. The feedback-free, open-loop wavelet transform KPFM (OL-WT-KPFM) technique harnesses the WT's ability to simultaneously extract spatial and temporal information from the photodetector signal to provide a dynamic mapping of surface potential, capacitance gradient, and dielectric constant at a temporal resolution 3 orders of magnitude higher than the lock-in time constant. We further demonstrate the method's applicability to explore the surface-photovoltage-induced sub-ms hole-diffusion transient in bismuth oxyiodide semiconductor. The OL-WT-KPFM concept is readily applicable to commercial systems and can provide the underlying basis for the real-time analysis of transient electronic and electrochemical properties.

6.
Nanoscale Adv ; 3(2): 383-398, 2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36131753

RESUMEN

The unique ability of Atomic Force Microscopy (AFM) to image, manipulate and characterize materials at the nanoscale has made it a remarkable tool in nanotechnology. In dynamic AFM, acquisition and processing of the photodetector signal originating from probe-sample interaction is a critical step in data analysis and measurements. However, details of such interaction including its nonlinearity and dynamics of the sample surface are limited due to the ultimately bounded bandwidth and limited time scales of data processing electronics of standard AFM. Similarly, transient details of the AFM probe's cantilever signal are lost due to averaging of data by techniques which correlate the frequency spectrum of the captured data with a temporally invariant physical system. Here, we introduce a fundamentally new approach for dynamic AFM data acquisition and imaging based on applying the wavelet transform on the data stream from the photodetector. This approach provides the opportunity for exploration of the transient response of the cantilever, analysis and imaging of the dynamics of amplitude and phase of the signals captured from the photodetector. Furthermore, it can be used for the control of AFM which would yield increased imaging speed. Hence the proposed method opens a pathway for high-speed transient force microscopy.

7.
Tree Physiol ; 38(9): 1267-1277, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29474732

RESUMEN

It has long been debated whether tree growth is source limited, or whether photosynthesis is adjusted to the actual sink demand, directly regulated by internal and environmental factors. Many studies support both possibilities, but no studies have provided quantitative data at the whole-tree level, across different cultivars and fruit load treatments. This study investigated the effect of different levels of reproductive growth on whole-tree biomass growth across two olive cultivars with different growth rates (i.e., Arbequina, slow-growing and Frantoio, fast-growing), over 2 years. Young trees of both cultivars were completely deflowered either in 2014, 2015, both years or never, providing a range of levels of cumulated reproductive growth over the 2 years. Total vegetative dry matter growth over the 2 years was assessed by destructive sampling (whole tree). Vegetative growth increased significantly less in fruiting trees, however, the total of vegetative and reproductive growth did not differ significantly for any treatment or cultivar. Vegetative growth over the 2 years was closely (R2 = 0.89) and inversely related to reproductive growth across all treatments and cultivars. When using data from 2015 only, the regression improved further (i.e., R2 = 0.99). When biomass was converted into grams of glucose equivalents, based on the chemical composition of the different parts, the results indicated that for every gram of glucose equivalent invested in reproductive growth, vegetative growth was reduced by 0.73-0.78 g of glucose equivalent. This indicates that competition for resources played a major role in determining tree growth, but also that photosynthesis was probably also enhanced at increasing fruit load (or downregulated at decreasing fruit load). The leaf area per unit of trunk cross sectional area increased with deflowering (i.e., decreased with reproductive growth), suggesting that water relations might have limited photosynthesis in deflowered plants, which had much greater canopies. Net assimilation rate (NAR) increased with reproductive growth and decreased with plant size. Net assimilation rate was also negatively correlated with the leaf area per unit of trunk cross sectional area, suggesting that water relations might have contributed to decreasing NAR at increasing plant size.


Asunto(s)
Olea/crecimiento & desarrollo , Biomasa , Flores/fisiología , Olea/fisiología , Hojas de la Planta/crecimiento & desarrollo , Árboles/crecimiento & desarrollo
8.
Adv Mater ; 26(27): 4645-52, 2014 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-24831036

RESUMEN

Multiferroic behaviour at room temperature is demonstrated in ε-Fe2 O3 . The simple composition of this new ferromagnetic ferroelectric oxide and the discovery of a robust path for its thin film growth by using suitable seed layers may boost the exploitation of ε-Fe2 O3 in novel devices.


Asunto(s)
Compuestos Férricos/química , Temperatura , Modelos Moleculares , Conformación Molecular , Niobio/química , Óxidos/química , Estroncio/química , Titanio/química
9.
Nano Rev ; 22011.
Artículo en Inglés | MEDLINE | ID: mdl-22132299

RESUMEN

UNLABELLED: Epitaxial heterostructures combining ferroelectric (FE) and ferromagnetic (FiM) oxides are a possible route to explore coupling mechanisms between the two independent order parameters, polarization and magnetization of the component phases. We report on the fabrication and properties of arrays of hybrid epitaxial nanostructures of FiM NiFe(2)O(4) (NFO) and FE PbZr(0.52)Ti(0.48)O(3) or PbZr(0.2)Ti(0.8)O(3), with large range order and lateral dimensions from 200 nm to 1 micron. METHODS: The structures were fabricated by pulsed-laser deposition. High resolution transmission electron microscopy and high angle annular dark-field scanning transmission electron microscopy were employed to investigate the microstructure and the epitaxial growth of the structures. Room temperature ferroelectric and ferrimagnetic domains of the heterostructures were imaged by piezoresponse force microscopy (PFM) and magnetic force microscopy (MFM), respectively. RESULTS: PFM and MFM investigations proved that the hybrid epitaxial nanostructures show ferroelectric and magnetic order at room temperature. Dielectric effects occurring after repeated switching of the polarization in large planar capacitors, comprising ferrimagnetic NiFe2O4 dots embedded in ferroelectric PbZr0.52Ti0.48O3 matrix, were studied. CONCLUSION: These hybrid multiferroic structures with clean and well defined epitaxial interfaces hold promise for reliable investigations of magnetoelectric coupling between the ferrimagnetic / magnetostrictive and ferroelectric / piezoelectric phases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA