Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Annu Rev Biochem ; 84: 895-921, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26034894

RESUMEN

Cellulose is the most abundant biopolymer on Earth, and certain organisms from bacteria to plants and animals synthesize cellulose as an extracellular polymer for various biological functions. Humans have used cellulose for millennia as a material and an energy source, and the advent of a lignocellulosic fuel industry will elevate it to the primary carbon source for the burgeoning renewable energy sector. Despite the biological and societal importance of cellulose, the molecular mechanism by which it is synthesized is now only beginning to emerge. On the basis of recent advances in structural and molecular biology on bacterial cellulose synthases, we review emerging concepts of how the enzymes polymerize glucose molecules, how the nascent polymer is transported across the plasma membrane, and how bacterial cellulose biosynthesis is regulated during biofilm formation. Additionally, we review evolutionary commonalities and differences between cellulose synthases that modulate the nature of the cellulose product formed.


Asunto(s)
Celulosa/biosíntesis , Plantas/metabolismo , Dominio Catalítico , Pared Celular/química , Transporte de Electrón , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo , Plantas/enzimología
2.
Proc Natl Acad Sci U S A ; 117(20): 10839-10847, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32358188

RESUMEN

Cyclic nucleotide-gated (CNG) ion channels are essential components of mammalian visual and olfactory signal transduction. CNG channels open upon direct binding of cyclic nucleotides (cAMP and/or cGMP), but the allosteric mechanism by which this occurs is incompletely understood. Here, we employed double electron-electron resonance (DEER) spectroscopy to measure intersubunit distance distributions in SthK, a bacterial CNG channel from Spirochaeta thermophila Spin labels were introduced into the SthK C-linker, a domain that is essential for coupling cyclic nucleotide binding to channel opening. DEER revealed an agonist-dependent conformational change in which residues of the B'-helix displayed outward movement with respect to the symmetry axis of the channel in the presence of the full agonist cAMP, but not with the partial agonist cGMP. This conformational rearrangement was observed both in detergent-solubilized SthK and in channels reconstituted into lipid nanodiscs. In addition to outward movement of the B'-helix, DEER-constrained Rosetta structural models suggest that channel activation involves upward translation of the cytoplasmic domain and formation of state-dependent interactions between the C-linker and the transmembrane domain. Our results demonstrate a previously unrecognized structural transition in a CNG channel and suggest key interactions that may be responsible for allosteric gating in these channels.


Asunto(s)
Sitio Alostérico/fisiología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/química , Canales Catiónicos Regulados por Nucleótidos Cíclicos/fisiología , Spirochaeta/metabolismo , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Escherichia coli/metabolismo , Activación del Canal Iónico/fisiología , Modelos Moleculares , Nucleótidos Cíclicos , Conformación Proteica
3.
Nature ; 531(7594): 329-34, 2016 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-26958837

RESUMEN

Many biopolymers, including polysaccharides, must be translocated across at least one membrane to reach their site of biological function. Cellulose is a linear glucose polymer synthesized and secreted by a membrane-integrated cellulose synthase. Here, in crystallo enzymology with the catalytically active bacterial cellulose synthase BcsA-BcsB complex reveals structural snapshots of a complete cellulose biosynthesis cycle, from substrate binding to polymer translocation. Substrate- and product-bound structures of BcsA provide the basis for substrate recognition and demonstrate the stepwise elongation of cellulose. Furthermore, the structural snapshots show that BcsA translocates cellulose via a ratcheting mechanism involving a 'finger helix' that contacts the polymer's terminal glucose. Cooperating with BcsA's gating loop, the finger helix moves 'up' and 'down' in response to substrate binding and polymer elongation, respectively, thereby pushing the elongated polymer into BcsA's transmembrane channel. This mechanism is validated experimentally by tethering BcsA's finger helix, which inhibits polymer translocation but not elongation.


Asunto(s)
Celulosa/biosíntesis , Celulosa/metabolismo , Glucosiltransferasas/química , Glucosiltransferasas/metabolismo , Membranas Intracelulares/metabolismo , Celulosa/química , Cristalografía por Rayos X , Glucosa/metabolismo , Membranas Intracelulares/química , Modelos Moleculares , Movimiento , Estructura Secundaria de Proteína , Proteolípidos/química , Proteolípidos/metabolismo , Rhodobacter sphaeroides/enzimología , Especificidad por Sustrato
4.
J Biol Chem ; 294(18): 7503-7515, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-30885945

RESUMEN

Cyclic nucleotide-gated (CNG) channels produce the initial electrical signal in mammalian vision and olfaction. They open in response to direct binding of cyclic nucleotide (cAMP or cGMP) to a cytoplasmic region of the channel. However, the conformational rearrangements occurring upon binding to produce pore opening (i.e. gating) are not well understood. SthK is a bacterial CNG channel that has the potential to serve as an ideal model for structure-function studies of gating but is currently limited by its toxicity, native cysteines, and low open probability (Po). Here, we expressed SthK in giant Escherichia coli spheroplasts and performed patch-clamp recordings to characterize SthK gating in a bacterial membrane. We demonstrated that the Po in cAMP is higher than has been previously published and that cGMP acts as a weak partial SthK agonist. Additionally, we determined that SthK expression is toxic to E. coli because of gating by cytoplasmic cAMP. We overcame this toxicity by developing an adenylate cyclase-knockout E. coli cell line. Finally, we generated a cysteine-free SthK construct and introduced mutations that further increase the Po in cAMP. We propose that this SthK model will help elucidate the gating mechanism of CNG channels.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/química , Activación del Canal Iónico , Técnicas de Placa-Clamp , Conformación Proteica , Esferoplastos/metabolismo
5.
Nature ; 493(7431): 181-6, 2013 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-23222542

RESUMEN

Cellulose, the most abundant biological macromolecule, is an extracellular, linear polymer of glucose molecules. It represents an essential component of plant cell walls but is also found in algae and bacteria. In bacteria, cellulose production frequently correlates with the formation of biofilms, a sessile, multicellular growth form. Cellulose synthesis and transport across the inner bacterial membrane is mediated by a complex of the membrane-integrated catalytic BcsA subunit and the membrane-anchored, periplasmic BcsB protein. Here we present the crystal structure of a complex of BcsA and BcsB from Rhodobacter sphaeroides containing a translocating polysaccharide. The structure of the BcsA-BcsB translocation intermediate reveals the architecture of the cellulose synthase, demonstrates how BcsA forms a cellulose-conducting channel, and suggests a model for the coupling of cellulose synthesis and translocation in which the nascent polysaccharide is extended by one glucose molecule at a time.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Biocatálisis , Membrana Celular/metabolismo , Celulosa/metabolismo , Rhodobacter/química , Rhodobacter/metabolismo , Secuencia de Aminoácidos , Transporte Biológico , Dominio Catalítico , Membrana Celular/química , Celulosa/biosíntesis , Cristalografía por Rayos X , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , GMP Cíclico/farmacología , Activación Enzimática/efectos de los fármacos , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Polisacáridos/metabolismo , Estructura Terciaria de Proteína , Rhodobacter/citología , Rhodobacter/enzimología
6.
Structure ; 25(3): 522-529, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28216041

RESUMEN

Type-1 secretion systems (T1SSs) represent a widespread mode of protein secretion across the cell envelope in Gram-negative bacteria. The T1SS is composed of an inner-membrane ABC transporter, a periplasmic membrane-fusion protein, and an outer-membrane porin. These three components assemble into a complex spanning both membranes and providing a conduit for the translocation of unfolded polypeptides. We show that ATP hydrolysis and assembly of the entire T1SS complex is necessary for protein secretion. Furthermore, we present a 3.15-Å crystal structure of AaPrtD, the ABC transporter found in the Aquifex aeolicus T1SS. The structure suggests a substrate entry window just above the transporter's nucleotide binding domains. In addition, highly kinked transmembrane helices, which frame a narrow channel not observed in canonical peptide transporters, are likely involved in substrate translocation. Overall, the AaPrtD structure supports a polypeptide transport mechanism distinct from alternating access.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Bacterias Gramnegativas/metabolismo , Sistemas de Secreción Tipo I/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/química , Proteínas Bacterianas/química , Cristalografía por Rayos X , Bacterias Gramnegativas/química , Hidrólisis , Modelos Moleculares , Estructura Terciaria de Proteína , Sistemas de Secreción Tipo I/química
7.
Methods Enzymol ; 557: 393-416, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25950975

RESUMEN

Biological membranes represent a unique environment in which integral membrane proteins (MPs) fold to perform diverse biological functions. In many cases, lipids support the native conformation or mediate important interactions between MPs. It is therefore imperative to develop methods that maintain this support for the structural and functional analyses of an exceedingly important class of biological macromolecules. Bicelles are detergent-stabilized phospholipid bilayer discs into which MPs can be reconstituted for biophysical studies. Here, we review recent advances and emerging concepts in employing bicelles for the crystallization and structure determination of MPs. We discuss variations of established procedures as well as alternative approaches, and we present a summary and analysis of the conditions used for bicelle-mediated MP crystallization.


Asunto(s)
Cristalización/métodos , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Fosfolípidos/química , Animales , Glucosiltransferasas/química , Humanos , Conformación Proteica , Pliegue de Proteína , Rhodobacter sphaeroides/química
8.
Nat Struct Mol Biol ; 21(5): 489-96, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24704788

RESUMEN

The bacterial signaling molecule cyclic di-GMP (c-di-GMP) stimulates the synthesis of bacterial cellulose, which is frequently found in biofilms. Bacterial cellulose is synthesized and translocated across the inner membrane by a complex of cellulose synthase BcsA and BcsB subunits. Here we present crystal structures of the c-di-GMP-activated BcsA-BcsB complex. The structures reveal that c-di-GMP releases an autoinhibited state of the enzyme by breaking a salt bridge that otherwise tethers a conserved gating loop that controls access to and substrate coordination at the active site. Disrupting the salt bridge by mutagenesis generates a constitutively active cellulose synthase. Additionally, the c-di-GMP-activated BcsA-BcsB complex contains a nascent cellulose polymer whose terminal glucose unit rests at a new location above BcsA's active site and is positioned for catalysis. Our mechanistic insights indicate how c-di-GMP allosterically modulates enzymatic functions.


Asunto(s)
Proteínas Bacterianas/química , Celulosa/biosíntesis , GMP Cíclico/química , Glucosiltransferasas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , GMP Cíclico/fisiología , Glucosiltransferasas/metabolismo , Modelos Moleculares , Estructura Terciaria de Proteína , Rhodobacter sphaeroides/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA