Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Imaging Inform Med ; 37(5): 1-7, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38587767

RESUMEN

De-identification of DICOM images is an essential component of medical image research. While many established methods exist for the safe removal of protected health information (PHI) in DICOM metadata, approaches for the removal of PHI "burned-in" to image pixel data are typically manual, and automated high-throughput approaches are not well validated. Emerging optical character recognition (OCR) models can potentially detect and remove PHI-bearing text from medical images but are very time-consuming to run on the high volume of images found in typical research studies. We present a data processing method that performs metadata de-identification for all images combined with a targeted approach to only apply OCR to images with a high likelihood of burned-in text. The method was validated on a dataset of 415,182 images across ten modalities representative of the de-identification requests submitted at our institution over a 20-year span. Of the 12,578 images in this dataset with burned-in text of any kind, only 10 passed undetected with the method. OCR was only required for 6050 images (1.5% of the dataset).


Asunto(s)
Metadatos , Humanos , Seguridad Computacional , Sistemas de Información Radiológica , Diagnóstico por Imagen/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA