Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Med ; 5(7): 780-796.e10, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38663403

RESUMEN

BACKGROUND: Dosing of chemotherapies is often calculated according to the weight and/or height of the patient or equations derived from these, such as body surface area (BSA). Such calculations fail to capture intra- and interindividual pharmacokinetic variation, which can lead to order of magnitude variations in systemic chemotherapy levels and thus under- or overdosing of patients. METHODS: We designed and developed a closed-loop drug delivery system that can dynamically adjust its infusion rate to the patient to reach and maintain the drug's target concentration, regardless of a patient's pharmacokinetics (PK). FINDINGS: We demonstrate that closed-loop automated drug infusion regulator (CLAUDIA) can control the concentration of 5-fluorouracil (5-FU) in rabbits according to a range of concentration-time profiles (which could be useful in chronomodulated chemotherapy) and over a range of PK conditions that mimic the PK variability observed clinically. In one set of experiments, BSA-based dosing resulted in a concentration 7 times above the target range, while CLAUDIA keeps the concentration of 5-FU in or near the targeted range. Further, we demonstrate that CLAUDIA is cost effective compared to BSA-based dosing. CONCLUSIONS: We anticipate that CLAUDIA could be rapidly translated to the clinic to enable physicians to control the plasma concentration of chemotherapy in their patients. FUNDING: This work was supported by MIT's Karl van Tassel (1925) Career Development Professorship and Department of Mechanical Engineering and the Bridge Project, a partnership between the Koch Institute for Integrative Cancer Research at MIT and the Dana-Farber/Harvard Cancer Center.


Asunto(s)
Sistemas de Liberación de Medicamentos , Fluorouracilo , Medicina de Precisión , Fluorouracilo/farmacocinética , Fluorouracilo/administración & dosificación , Conejos , Animales , Sistemas de Liberación de Medicamentos/métodos , Medicina de Precisión/métodos , Humanos , Infusiones Intravenosas , Antimetabolitos Antineoplásicos/farmacocinética , Antimetabolitos Antineoplásicos/administración & dosificación
2.
Sci Robot ; 7(70): eabp9066, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36170378

RESUMEN

Oral drug delivery of proteins is limited by the degradative environment of the gastrointestinal tract and poor absorption, requiring parenteral administration of these drugs. Luminal mucus represents the initial steric and dynamic barrier to absorption. To overcome this barrier, we report the development of the RoboCap, an orally ingestible, robotic drug delivery capsule that locally clears the mucus layer, enhances luminal mixing, and topically deposits the drug payload in the small intestine to enhance drug absorption. RoboCap's mucus-clearing and churning movements are facilitated by an internal motor and by surface features that interact with small intestinal plicae circulares, villi, and mucus. Vancomycin (1.4 kilodaltons of glycopeptide) and insulin (5.8 kilodaltons of peptide) delivery mediated by RoboCap resulted in enhanced bioavailability 20- to 40-fold greater in ex vivo and in vivo swine models when compared with standard oral delivery (P < 0.05). Further, insulin delivery via the RoboCap resulted in therapeutic hypoglycemia, supporting its potential to facilitate oral delivery of drugs that are normally precluded by absorption limitations.


Asunto(s)
Nanopartículas , Procedimientos Quirúrgicos Robotizados , Administración Oral , Animales , Tracto Gastrointestinal/metabolismo , Insulina/metabolismo , Moco/metabolismo , Péptidos/metabolismo , Porcinos , Vancomicina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA