Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Biol Evol ; 36(3): 516-526, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30624681

RESUMEN

The evolution of altruism in complex insect societies is arguably one of the major transitions in evolution and inclusive fitness theory plausibly explains why this is an evolutionary stable strategy. Yet, workers of the South African Cape honey bee (Apis mellifera capensis) can reverse to selfish behavior by becoming social parasites and parthenogenetically producing female offspring (thelytoky). Using a joint mapping and population genomics approach, in combination with a time-course transcript abundance dynamics analysis, we show that a single nucleotide polymorphism at the mapped thelytoky locus (Th) is associated with the iconic thelytokous phenotype. Th forms a linkage group with the ecdysis-triggering hormone receptor (Ethr) within a nonrecombining region under strong selection in the genome. A balanced detrimental allele system plausibly explains why the trait is specific to A. m. capensis and cannot easily establish itself into genomes of other honey bee subspecies.


Asunto(s)
Abejas/genética , Partenogénesis/genética , Altruismo , Animales , Femenino , Polimorfismo de Nucleótido Simple , Selección Genética
2.
Mol Ecol ; 28(12): 2958-2966, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30916410

RESUMEN

Social insect colonies possess a range of defences which protect them against highly virulent parasites and colony collapse. The host-parasite interaction between honey bees (Apis mellifera) and the mite Varroa destructor is unusual, as honey bee colonies are relatively poorly defended against this parasite. The interaction has existed since the mid-20th Century, when Varroa switched host to parasitize A. mellifera. The combination of a virulent parasite and relatively naïve host means that, without acaricides, honey bee colonies typically die within 3 years of Varroa infestation. A consequence of acaricide use has been a reduced selective pressure for the evolution of Varroa resistance in honey bee colonies. However, in the past 20 years, several natural-selection-based breeding programmes have resulted in the evolution of Varroa-resistant populations. In these populations, the inhibition of Varroa's reproduction is a common trait. Using a high-density genome-wide association analysis in a Varroa-resistant honey bee population, we identify an ecdysone-induced gene significantly linked to resistance. Ecdysone both initiates metamorphosis in insects and reproduction in Varroa. Previously, using a less dense genetic map and a quantitative trait loci analysis, we have identified Ecdysone-related genes at resistance loci in an independently evolved resistant population. Varroa cannot biosynthesize ecdysone but can acquire it from its diet. Using qPCR, we are able to link the expression of ecdysone-linked resistance genes to Varroa's meals and reproduction. If Varroa co-opts pupal compounds to initiate and time its own reproduction, mutations in the host's ecdysone pathway may represent a key selection tool for honey bee resistance and breeding.


Asunto(s)
Abejas/genética , Resistencia a la Enfermedad/genética , Ecdisona/genética , Varroidae/genética , Animales , Abejas/crecimiento & desarrollo , Abejas/parasitología , Expresión Génica/genética , Estudio de Asociación del Genoma Completo , Interacciones Huésped-Parásitos/genética , Pupa/genética , Pupa/crecimiento & desarrollo , Pupa/parasitología , Reproducción/genética , Varroidae/patogenicidad
3.
J Evol Biol ; 31(6): 801-809, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29577506

RESUMEN

The Red Queen hypothesis predicts that host-parasite coevolutionary dynamics can select for host resistance through increased genetic diversity, recombination and evolutionary rates. However, in haplodiploid organisms such as the honeybee (Apis mellifera), models suggest the selective pressure is weaker than in diploids. Haplodiploid sex determination, found in A. mellifera, can allow deleterious recessive alleles to persist in the population through the diploid sex with negative effects predominantly expressed in the haploid sex. To overcome these negative effects in haploid genomes, epistatic interactions have been hypothesized to play an important role. Here, we use the interaction between A. mellifera and the parasitic mite Varroa destructor to test epistasis in the expression of resistance, through the inhibition of parasite reproduction, in haploid drones. We find novel loci on three chromosomes which explain over 45% of the resistance phenotype. Two of these loci interact only additively, suggesting their expression is independent of each other, but both loci interact epistatically with the third locus. With drone offspring inheriting only one copy of the queen's chromosomes, the drones will only possess one of two queen alleles throughout the years-long lifetime of the honeybee colony. Varroa, in comparison, completes its highly inbred reproductive cycle in a matter of weeks, allowing it to rapidly evolve resistance. Faced with the rapidly evolving Varroa, a diversity of pathways and epistatic interactions for the inhibition of Varroa reproduction could therefore provide a selective advantage to the high levels of recombination seen in A. mellifera. This allows for the remixing of phenotypes despite a fixed queen genotype.


Asunto(s)
Abejas/parasitología , Evolución Biológica , Epistasis Genética/fisiología , Haploidia , Varroidae/fisiología , Animales , Abejas/genética , ADN/genética , Interacciones Huésped-Parásitos , Masculino , Sitios de Carácter Cuantitativo , Varroidae/genética
4.
Naturwissenschaften ; 105(3-4): 22, 2018 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-29557991

RESUMEN

Social insects are characterized by the division of labor. Queens usually dominate reproduction, whereas workers fulfill non-reproductive age-dependent tasks to maintain the colony. Although workers are typically sterile, they can activate their ovaries to produce their own offspring. In the extreme, worker reproduction can turn into social parasitism as in Apis mellifera capensis. These intraspecific parasites occupy a host colony, kill the resident queen, and take over the reproductive monopoly. Because they exhibit a queenlike behavior and are also treated like queens by the fellow workers, they are so-called pseudoqueens. Here, we compare the development of parasitic pseudoqueens and social workers at different time points using fat body transcriptome data. Two complementary analysis methods-a principal component analysis and a time course analysis-led to the identification of a core set of genes involved in the transition from a social worker into a highly fecund parasitic pseudoqueen. Comparing our results on pseudoqueens with gene expression data of honeybee queens revealed many similarities. In addition, there was a set of specific transcriptomic changes in the parasitic pseudoqueens that differed from both, queens and social workers, which may be typical for the development of the social parasitism in A. m. capensis.


Asunto(s)
Abejas/fisiología , Transcriptoma/genética , Animales , Abejas/genética , Femenino , Jerarquia Social , Reproducción/genética
5.
J Invertebr Pathol ; 154: 1-4, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29550404

RESUMEN

Nosema ceranae is an intracellular microsporidian parasite that infects epithelial cells of the honey bee (Apis mellifera) midgut. Previous studies have shown that Nosema may alter cell renewal and apoptosis in honey bees. We found that the amount of apoptotic cells progressively declines from the anterior towards posterior regions of the midgut in Nosema-infected sensitive bees. There was no such pattern in the infected Nosema tolerant honey bees and controls. These data provide additional evidence that N. ceranae appears to alter apoptosis in its host cells for its own advantage.


Asunto(s)
Apoptosis , Abejas/parasitología , Microsporidiosis/patología , Nosema/patogenicidad , Animales , Sistema Digestivo , Interacciones Huésped-Parásitos , Nosema/fisiología
6.
BMC Genomics ; 18(1): 207, 2017 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-28249569

RESUMEN

BACKGROUND: Organisms typically face infection by diverse pathogens, and hosts are thought to have developed specific responses to each type of pathogen they encounter. The advent of transcriptomics now makes it possible to test this hypothesis and compare host gene expression responses to multiple pathogens at a genome-wide scale. Here, we performed a meta-analysis of multiple published and new transcriptomes using a newly developed bioinformatics approach that filters genes based on their expression profile across datasets. Thereby, we identified common and unique molecular responses of a model host species, the honey bee (Apis mellifera), to its major pathogens and parasites: the Microsporidia Nosema apis and Nosema ceranae, RNA viruses, and the ectoparasitic mite Varroa destructor, which transmits viruses. RESULTS: We identified a common suite of genes and conserved molecular pathways that respond to all investigated pathogens, a result that suggests a commonality in response mechanisms to diverse pathogens. We found that genes differentially expressed after infection exhibit a higher evolutionary rate than non-differentially expressed genes. Using our new bioinformatics approach, we unveiled additional pathogen-specific responses of honey bees; we found that apoptosis appeared to be an important response following microsporidian infection, while genes from the immune signalling pathways, Toll and Imd, were differentially expressed after Varroa/virus infection. Finally, we applied our bioinformatics approach and generated a gene co-expression network to identify highly connected (hub) genes that may represent important mediators and regulators of anti-pathogen responses. CONCLUSIONS: Our meta-analysis generated a comprehensive overview of the host metabolic and other biological processes that mediate interactions between insects and their pathogens. We identified key host genes and pathways that respond to phylogenetically diverse pathogens, representing an important source for future functional studies as well as offering new routes to identify or generate pathogen resilient honey bee stocks. The statistical and bioinformatics approaches that were developed for this study are broadly applicable to synthesize information across transcriptomic datasets. These approaches will likely have utility in addressing a variety of biological questions.


Asunto(s)
Abejas/genética , Interacciones Huésped-Patógeno/genética , Animales , Abejas/microbiología , Abejas/parasitología , Abejas/virología , Bases de Datos Genéticas , Evolución Molecular , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Inmunidad Innata/genética , Anotación de Secuencia Molecular , Nosema/fisiología , Virus ARN/fisiología , Varroidae/fisiología
7.
Nature ; 537(7621): E10-2, 2016 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-27652566
8.
Trends Genet ; 29(11): 641-8, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24012355

RESUMEN

Honeybees have been studied for centuries, starting with Aristotle, who wrote the first book about bee breeding. More than 2000 years later, the honeybee entered the genomic era as the first social insect whose genome was sequenced, leading to significant insight into the molecular mechanisms underlying social behavior. In addition, gene expression studies and knockdown using RNAi have extended the understanding of social interactions. Much of the work has focused on caste determination - the mechanism that results in reproductive division of labor, division of labor within the worker caste, and worker reproduction - an essential process underlying eusociality. Here we review the molecular factors involved in caste determination and the differential regulation of caste-specific genes. Recent findings suggest that division of labor is influenced by a small number of loci showing high levels of pleiotropy, suggesting that changes in a small number of genes lead to large changes in the phenotype.


Asunto(s)
Abejas/genética , Proteínas de Insectos/genética , Reproducción , Conducta Social , Animales , Metilación de ADN , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/metabolismo , Insulina/metabolismo , Hormonas Juveniles/metabolismo , Masculino , Modelos Animales , Fenotipo , Sitios de Carácter Cuantitativo , Interferencia de ARN , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
9.
Parasitol Res ; 115(6): 2381-8, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26976406

RESUMEN

Host-pathogen coevolution leads to reciprocal adaptations, allowing pathogens to increase host exploitation or hosts to minimise costs of infection. As pathogen resistance is often associated with considerable costs, tolerance may be an evolutionary alternative. Here, we examined the effect of two closely related and highly host dependent intracellular gut pathogens, Nosema apis and Nosema ceranae, on the energetic state in Nosema tolerant and sensitive honeybees facing the infection. We quantified the three major haemolymph carbohydrates fructose, glucose, and trehalose using high-performance liquid chromatography (HPLC) as a measure for host energetic state. Trehalose levels in the haemolymph were negatively associated with N. apis infection intensity and with N. ceranae infection regardless of the infection intensity in sensitive honeybees. Nevertheless, there was no such association in Nosema spp. infected tolerant honeybees. These findings suggest that energy availability in tolerant honeybees was not compromised by the infection. This result obtained at the individual level may also have implications at the colony level where workers in spite of a Nosema infection can still perform as well as healthy bees, maintaining colony efficiency and productivity.


Asunto(s)
Adaptación Fisiológica , Abejas/microbiología , Metabolismo Energético , Interacciones Huésped-Patógeno , Nosema/fisiología , Animales , Abejas/fisiología , Hemolinfa , Estrés Fisiológico
10.
Environ Microbiol ; 17(4): 969-83, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25611325

RESUMEN

Microbial pathogens are thought to have a profound impact on insect populations. Honey bees are suffering from elevated colony losses in the northern hemisphere possibly because of a variety of emergent microbial pathogens, with which pesticides may interact to exacerbate their impacts. To reveal such potential interactions, we administered at sublethal and field realistic doses one neonicotinoid pesticide (thiacloprid) and two common microbial pathogens, the invasive microsporidian Nosema ceranae and black queen cell virus (BQCV), individually to larval and adult honey bees in the laboratory. Through fully crossed experiments in which treatments were administered singly or in combination, we found an additive interaction between BQCV and thiacloprid on host larval survival likely because the pesticide significantly elevated viral loads. In adult bees, two synergistic interactions increased individual mortality: between N. ceranae and BQCV, and between N. ceranae and thiacloprid. The combination of two pathogens had a more profound effect on elevating adult mortality than N. ceranae plus thiacloprid. Common microbial pathogens appear to be major threats to honey bees, while sublethal doses of pesticide may enhance their deleterious effects on honey bee larvae and adults. It remains an open question as to whether these interactions can affect colony survival.


Asunto(s)
Abejas , Dicistroviridae/patogenicidad , Nosema/patogenicidad , Plaguicidas/farmacología , Piridinas/farmacología , Tiazinas/farmacología , Animales , Abejas/efectos de los fármacos , Abejas/microbiología , Abejas/virología , Larva/efectos de los fármacos , Larva/microbiología , Larva/virología , Estadios del Ciclo de Vida , Neonicotinoides
11.
BMC Genomics ; 15: 86, 2014 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-24479613

RESUMEN

BACKGROUND: The first generation of genome sequence assemblies and annotations have had a significant impact upon our understanding of the biology of the sequenced species, the phylogenetic relationships among species, the study of populations within and across species, and have informed the biology of humans. As only a few Metazoan genomes are approaching finished quality (human, mouse, fly and worm), there is room for improvement of most genome assemblies. The honey bee (Apis mellifera) genome, published in 2006, was noted for its bimodal GC content distribution that affected the quality of the assembly in some regions and for fewer genes in the initial gene set (OGSv1.0) compared to what would be expected based on other sequenced insect genomes. RESULTS: Here, we report an improved honey bee genome assembly (Amel_4.5) with a new gene annotation set (OGSv3.2), and show that the honey bee genome contains a number of genes similar to that of other insect genomes, contrary to what was suggested in OGSv1.0. The new genome assembly is more contiguous and complete and the new gene set includes ~5000 more protein-coding genes, 50% more than previously reported. About 1/6 of the additional genes were due to improvements to the assembly, and the remaining were inferred based on new RNAseq and protein data. CONCLUSIONS: Lessons learned from this genome upgrade have important implications for future genome sequencing projects. Furthermore, the improvements significantly enhance genomic resources for the honey bee, a key model for social behavior and essential to global ecology through pollination.


Asunto(s)
Abejas/genética , Genes de Insecto , Animales , Composición de Base , Bases de Datos Genéticas , Secuencias Repetitivas Esparcidas/genética , Anotación de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Péptidos/análisis , Análisis de Secuencia de ARN , Homología de Secuencia de Aminoácido
12.
Mol Ecol ; 23(9): 2353-61, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24650190

RESUMEN

Both climatic and geographical factors play an important role for the biogeographical distribution of species. The Carpathian mountain ridge has been suggested as a natural geographical divide between the two honeybee subspecies Apis mellifera carnica and A. m. macedonica. We sampled one worker from one colony each at 138 traditional apiaries located across the Carpathians spanning from the Hungarian plains to the Danube delta. All samples were sequenced at the mitochondrial tRNA(Leu)-cox2 intergenic region and genotyped at twelve microsatellite loci. The Carpathians had only limited impact on the biogeography because both subspecies were abundant on either side of the mountain ridge. In contrast, subspecies differentiation strongly correlated with the various temperature zones in Romania. A. m. carnica is more abundant in regions with the mean average temperature below 9 °C, whereas A. m. macedonica honeybees are more frequent in regions with mean temperatures above 9 °C. This range selection may have impact on the future biogeography in the light of anticipated global climatic changes.


Asunto(s)
Abejas/genética , Clima , Genética de Población , Animales , Abejas/clasificación , ADN Mitocondrial/genética , Genes de Insecto , Geografía , Italia , Repeticiones de Microsatélite , Datos de Secuencia Molecular , República de Macedonia del Norte , Rumanía , Análisis de Secuencia de ADN , Eslovenia
13.
Proc Natl Acad Sci U S A ; 108(37): 15282-7, 2011 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-21896748

RESUMEN

In eusocial insects the production of daughters is generally restricted to mated queens, and unmated workers are functionally sterile. The evolution of this worker sterility has been plausibly explained by kin selection theory [Hamilton W (1964) J Theor Biol 7:1-52], and many traits have evolved to prevent conflict over reproduction among the females in an insect colony. In honeybees (Apis mellifera), worker reproduction is regulated by the queen, brood pheromones, and worker policing. However, workers of the Cape honeybee, Apis mellifera capensis, can evade this control and establish themselves as social parasites by activating their ovaries, parthenogenetically producing diploid female offspring (thelytoky) and producing queen-like amounts of queen pheromones. All these traits have been shown to be strongly influenced by a single locus on chromosome 13 [Lattorff HMG, et al. (2007) Biol Lett 3:292-295]. We screened this region for candidate genes and found that alternative splicing of a gene homologous to the gemini transcription factor of Drosophila controls worker sterility. Knocking out the critical exon in a series of RNAi experiments resulted in rapid worker ovary activation-one of the traits characteristic of the social parasites. This genetic switch may be controlled by a short intronic splice enhancer motif of nine nucleotides attached to the alternative splice site. The lack of this motif in parasitic Cape honeybee clones suggests that the removal of nine nucleotides from the altruistic worker genome may be sufficient to turn a honeybee from an altruistic worker into a parasite.


Asunto(s)
Empalme Alternativo/genética , Abejas/genética , Jerarquia Social , Proteínas de Insectos/genética , Conducta Sexual Animal/fisiología , Factores de Transcripción/genética , Animales , Exones/genética , Femenino , Técnicas de Silenciamiento del Gen , Proteínas de Insectos/metabolismo , Intrones/genética , Modelos Genéticos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Reproducción/genética , Factores de Transcripción/metabolismo
14.
Mol Ecol ; 22(12): 3208-10, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24433572

RESUMEN

The article by Harpur et al. (2012) 'Management increases genetic diversity of honey bees via admixture' concludes that '…honey bees do not suffer from reduced genetic diversity caused by management and, consequently, that reduced genetic diversity is probably not contributing to declines of managed Apis mellifera populations'. In the light of current honeybee and beekeeping declines and their consequences for honeybee conservation and the pollination services they provide, we would like to express our concern about the conclusions drawn from the results of Harpur et al. (2012). While many honeybee management practices do not imply admixture, we are convinced that the large-scale genetic homogenization of admixed populations could drive the loss of valuable local adaptations. We also point out that the authors did not account for the extensive gene flow that occurs between managed and wild/feral honeybee populations and raise concerns about the data set used. Finally, we caution against underestimating the importance of genetic diversity for honeybee colonies and highlight the importance of promoting the use of endemic honeybee subspecies in apiculture.


Asunto(s)
Crianza de Animales Domésticos , Abejas/genética , Variación Genética , Genética de Población , Animales
16.
J Hered ; 103(4): 612-4; author reply 614-5, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22581844

RESUMEN

Laying workers of the Cape honeybee parthenogenetically produce female offspring, whereas queens typically produce males. Beekman et al. confirm this observation, which has repeatedly been reported over the last 100 years including the notion that natural selection should favor asexual reproduction in Apis mellifera capensis. They attempt to support their arguments with an exceptionally surprising finding that A. m. capensis queens can parthenogenetically produce diploid homozygous queen offspring (homozygous diploid individuals develop into diploid males in the honeybee). Beekman et al. suggest that these homozygous queens are not viable because they did not find any homozygous individuals beyond the third larval instar. Even if this were true, such a lethal trait should be quickly eliminated by natural selection. The identification of sex (both with molecular and morphological markers) is possible but notoriously difficult in honeybees at the early larval stages. Ploidy is however a reliable indicator, and we therefore suggest that these "homozygous" larvae found in queen cells are actually drones reared from unfertilized eggs, a phenomenon well known by honeybee queen breeders.


Asunto(s)
Abejas/genética , Animales , Femenino , Masculino
17.
J Invertebr Pathol ; 109(3): 297-302, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22285444

RESUMEN

Honey bee colonies (Apis mellifera) have been selected for low level of Nosema in Denmark over decades and Nosema is now rarely found in bee colonies from these breeding lines. We compared the immune response of a selected and an unselected honey bee lineage, taking advantage of the haploid males to study its potential impact on the tolerance toward Nosema ceranae, a novel introduced microsporidian pathogen. After artificial infections of the N. ceranae spores, the lineage selected for Nosema tolerance showed a higher N. ceranae spore load, a lower mortality and an up-regulated immune response. The differences in the response of the innate immune system between the selected and unselected lineage were strongest at day six post infection. In particular genes of the Toll pathway were up-regulated in the selected strain, probably is the main immune pathway involved in N. ceranae infection response. After decades of selective breeding for Nosema tolerance in the Danish strain, it appears these bees are tolerant to N. ceranae infections.


Asunto(s)
Abejas/genética , Abejas/inmunología , Microsporidiosis/genética , Microsporidiosis/inmunología , Nosema/inmunología , Animales , Abejas/parasitología , Perfilación de la Expresión Génica , Masculino , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Transducción de Señal/inmunología
18.
J Invertebr Pathol ; 110(1): 48-53, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22349145

RESUMEN

Bumblebees are of profound ecological importance because of the pollination services they provide in natural and agricultural ecosystems. Any decline of these pollinators is therefore of great concern for ecosystem functioning. Increased parasite pressures have been discussed as a major factor for the loss of pollinators. One of the main parasites of bumblebees is Nosema bombi, an intracellular microsporidian parasite with considerable impact on the vitality of the host. Here we study the effect of host colony density and host genetic variability on N. bombi infections in natural populations of the bumblebee Bombus terrestris. We sampled males and workers from six B. terrestris populations located in an agricultural landscape in Middle Sweden to determine the prevalence and degree of N. bombi infections. All individuals were genotyped with five microsatellite markers to infer the colony densities in the sampled populations and the genetic variability of the host population. We confirmed that genetic variability and sex significantly correlate with the degree of infection with N. bombi. Males and workers with lower genetic variability had significantly higher infection levels than average. Also colony density had a significant impact on the degree of infection, with high density populations having higher infected individuals.


Asunto(s)
Interacciones Huésped-Patógeno , Himenópteros/genética , Himenópteros/microbiología , Nosema , Animales , Femenino , Masculino , Prevalencia , Suecia
19.
J Invertebr Pathol ; 110(1): 68-72, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22386493

RESUMEN

Propolis is derived from plant resins, collected by honeybees (Apis mellifera) and renown for its antibacterial properties. Here we test the antibacterial effects of ethanolic extracts of propolis from different origins on Paenibacillus larvae, the bacterial pathogen that causes American Foulbrood, a larval disease that can kill the honeybee colony. All tested propolis samples inhibited significantly the growth of P. larvae tested in vitro. The extracts showed major differences in the content of total flavonoids (ranging from 2.4% to 16.4%) and the total polyphenols (ranging between 23.3% and 63.2%). We found that it is not only the content of compounds in propolis, which influences the strength of antimicrobial effects but there is also a significant interaction effect among flavonoids of the propolis extracts. We propose that interaction effects among the various chemical compounds in propolis should be taken into account when considering the antibacterial effects against honeybee pathogens.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Abejas/efectos de los fármacos , Abejas/microbiología , Flavonoides/química , Paenibacillus , Própolis/química , Própolis/farmacología , Animales , Pruebas de Sensibilidad Microbiana
20.
BMC Genomics ; 12: 48, 2011 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-21247459

RESUMEN

BACKGROUND: The bumblebee Bombus terrestris is an ecologically and economically important pollinator and has become an important biological model system. To study fundamental evolutionary questions at the genomic level, a high resolution genetic linkage map is an essential tool for analyses ranging from quantitative trait loci (QTL) mapping to genome assembly and comparative genomics. We here present a saturated linkage map and match it with the Apis mellifera genome using homologous markers. This genome-wide comparison allows insights into structural conservations and rearrangements and thus the evolution on a chromosomal level. RESULTS: The high density linkage map covers ~ 93% of the B. terrestris genome on 18 linkage groups (LGs) and has a length of 2'047 cM with an average marker distance of 4.02 cM. Based on a genome size of ~ 430 Mb, the recombination rate estimate is 4.76 cM/Mb. Sequence homologies of 242 homologous markers allowed to match 15 B. terrestris with A. mellifera LGs, five of them as composites. Comparing marker orders between both genomes we detect over 14% of the genome to be organized in synteny and 21% in rearranged blocks on the same homologous LG. CONCLUSIONS: This study demonstrates that, despite the very high recombination rates of both A. mellifera and B. terrestris and a long divergence time of about 100 million years, the genomes' genetic architecture is highly conserved. This reflects a slow genome evolution in these bees. We show that data on genome organization and conserved molecular markers can be used as a powerful tool for comparative genomics and evolutionary studies, opening up new avenues of research in the Apidae.


Asunto(s)
Abejas/genética , Evolución Biológica , Mapeo Cromosómico/métodos , Genoma de los Insectos/genética , Animales , Sitios de Carácter Cuantitativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA