Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 20(11): e3001871, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36383605

RESUMEN

Epidemiological data demonstrate that Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) Alpha and Delta are more transmissible, infectious, and pathogenic than previous variants. Phenotypic properties of VOC remain understudied. Here, we provide an extensive functional study of VOC Alpha replication and cell entry phenotypes assisted by reverse genetics, mutational mapping of spike in lentiviral pseudotypes, viral and cellular gene expression studies, and infectivity stability assays in an enhanced range of cell and epithelial culture models. In almost all models, VOC Alpha spread less or equally efficiently as ancestral (B.1) SARS-CoV-2. B.1. and VOC Alpha shared similar susceptibility to serum neutralization. Despite increased relative abundance of specific sgRNAs in the context of VOC Alpha infection, immune gene expression in infected cells did not differ between VOC Alpha and B.1. However, inferior spreading and entry efficiencies of VOC Alpha corresponded to lower abundance of proteolytically cleaved spike products presumably linked to the T716I mutation. In addition, we identified a bronchial cell line, NCI-H1299, which supported 24-fold increased growth of VOC Alpha and is to our knowledge the only cell line to recapitulate the fitness advantage of VOC Alpha compared to B.1. Interestingly, also VOC Delta showed a strong (595-fold) fitness advantage over B.1 in these cells. Comparative analysis of chimeric viruses expressing VOC Alpha spike in the backbone of B.1, and vice versa, showed that the specific replication phenotype of VOC Alpha in NCI-H1299 cells is largely determined by its spike protein. Despite undetectable ACE2 protein expression in NCI-H1299 cells, CRISPR/Cas9 knock-out and antibody-mediated blocking experiments revealed that multicycle spread of B.1 and VOC Alpha required ACE2 expression. Interestingly, entry of VOC Alpha, as opposed to B.1 virions, was largely unaffected by treatment with exogenous trypsin or saliva prior to infection, suggesting enhanced resistance of VOC Alpha spike to premature proteolytic cleavage in the extracellular environment of the human respiratory tract. This property may result in delayed degradation of VOC Alpha particle infectivity in conditions typical of mucosal fluids of the upper respiratory tract that may be recapitulated in NCI-H1299 cells closer than in highly ACE2-expressing cell lines and models. Our study highlights the importance of cell model evaluation and comparison for in-depth characterization of virus variant-specific phenotypes and uncovers a fine-tuned interrelationship between VOC Alpha- and host cell-specific determinants that may underlie the increased and prolonged virus shedding detected in patients infected with VOC Alpha.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Enzima Convertidora de Angiotensina 2/genética , Esparcimiento de Virus , Anticuerpos Bloqueadores
2.
Br J Cancer ; 130(8): 1249-1260, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38361045

RESUMEN

BACKGROUND: The aim of this study was to analyse transcriptomic differences between primary and recurrent high-grade serous ovarian carcinoma (HGSOC) to identify prognostic biomarkers. METHODS: We analysed 19 paired primary and recurrent HGSOC samples using targeted RNA sequencing. We selected the best candidates using in silico survival and pathway analysis and validated the biomarkers using immunohistochemistry on a cohort of 44 paired samples, an additional cohort of 504 primary HGSOCs and explored their function. RESULTS: We identified 233 differential expressed genes. Twenty-three showed a significant prognostic value for PFS and OS in silico. Seven markers (AHRR, COL5A2, FABP4, HMGCS2, ITGA5, SFRP2 and WNT9B) were chosen for validation at the protein level. AHRR expression was higher in primary tumours (p < 0.0001) and correlated with better patient survival (p < 0.05). Stromal SFRP2 expression was higher in recurrent samples (p = 0.009) and protein expression in primary tumours was associated with worse patient survival (p = 0.022). In multivariate analysis, tumour AHRR and SFRP2 remained independent prognostic markers. In vitro studies supported the anti-tumorigenic role of AHRR and the oncogenic function of SFRP2. CONCLUSIONS: Our results underline the relevance of AHRR and SFRP2 proteins in aryl-hydrocarbon receptor and Wnt-signalling, respectively, and might lead to establishing them as biomarkers in HGSOC.


Asunto(s)
Cistadenocarcinoma Seroso , Neoplasias Ováricas , Femenino , Humanos , Pronóstico , Neoplasias Ováricas/patología , Perfilación de la Expresión Génica , Biomarcadores de Tumor/genética , Cistadenocarcinoma Seroso/patología , Proteínas de la Membrana/genética , Proteínas Represoras/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética
3.
Int J Cancer ; 150(12): 2058-2071, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35262195

RESUMEN

Lung carcinoid tumors, also referred to as pulmonary neuroendocrine tumors or lung carcinoids, are rare neoplasms of the lung with a more favorable prognosis than other subtypes of lung cancer. Still, some patients suffer from relapsed disease and metastatic spread. Several recent single-cell studies have provided detailed insights into the cellular heterogeneity of more common lung cancers, such as adeno- and squamous cell carcinoma. However, the characteristics of lung carcinoids on the single-cell level are yet completely unknown. To study the cellular composition and single-cell gene expression profiles in lung carcinoids, we applied single-cell RNA sequencing to three lung carcinoid tumor samples and normal lung tissue. The single-cell transcriptomes of carcinoid tumor cells reflected intertumoral heterogeneity associated with clinicopathological features, such as tumor necrosis and proliferation index. The immune microenvironment was specifically enriched in noninflammatory monocyte-derived myeloid cells. Tumor-associated endothelial cells were characterized by distinct gene expression profiles. A spectrum of vascular smooth muscle cells and pericytes predominated the stromal microenvironment. We found a small proportion of myofibroblasts exhibiting features reminiscent of cancer-associated fibroblasts. Stromal and immune cells exhibited potential paracrine interactions which may shape the microenvironment via NOTCH, VEGF, TGFß and JAK/STAT signaling. Moreover, single-cell gene signatures of pericytes and myofibroblasts demonstrated prognostic value in bulk gene expression data. Here, we provide first comprehensive insights into the cellular composition and single-cell gene expression profiles in lung carcinoids, demonstrating the noninflammatory and vessel-rich nature of their tumor microenvironment, and outlining relevant intercellular interactions which could serve as future therapeutic targets.


Asunto(s)
Tumor Carcinoide , Carcinoma Neuroendocrino , Neoplasias Pulmonares , Tumores Neuroendocrinos , Tumor Carcinoide/genética , Tumor Carcinoide/metabolismo , Tumor Carcinoide/patología , Carcinoma Neuroendocrino/patología , Células Endoteliales/metabolismo , Humanos , Pulmón/patología , Neoplasias Pulmonares/patología , Tumores Neuroendocrinos/patología , Pronóstico , Microambiente Tumoral/genética
4.
J Hepatol ; 77(5): 1386-1398, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35863491

RESUMEN

BACKGROUND & AIMS: Pluripotent stem cell (PSC)-derived hepatocyte-like cells (HLC) have enormous potential as a replacement for primary hepatocytes in drug screening, toxicology and cell replacement therapy, but their genome-wide expression patterns differ strongly from primary human hepatocytes (PHH). METHODS: We differentiated human induced pluripotent stem cells (hiPSC) via definitive endoderm to HLC and characterized the cells by single-cell and bulk RNA-seq, with complementary epigenetic analyses. We then compared HLC to PHH and publicly available data on human fetal hepatocytes (FH) ex vivo; we performed bioinformatics-guided interventions to improve HLC differentiation via lentiviral transduction of the nuclear receptor FXR and agonist exposure. RESULTS: Single-cell RNA-seq revealed that transcriptomes of individual HLC display a hybrid state, where hepatocyte-associated genes are expressed in concert with genes that are not expressed in PHH - mostly intestinal genes - within the same cell. Bulk-level overrepresentation analysis, as well as regulon analysis at the single-cell level, identified sets of regulatory factors discriminating HLC, FH, and PHH, hinting at a central role for the nuclear receptor FXR in the functional maturation of HLC. Combined FXR expression plus agonist exposure enhanced the expression of hepatocyte-associated genes and increased the ability of bile canalicular secretion as well as lipid droplet formation, thereby increasing HLCs' similarity to PHH. The undesired non-liver gene expression was reproducibly decreased, although only by a moderate degree. CONCLUSION: In contrast to physiological hepatocyte precursor cells and mature hepatocytes, HLC co-express liver and hybrid genes in the same cell. Targeted modification of the FXR gene regulatory network improves their differentiation by suppressing intestinal traits whilst inducing hepatocyte features. LAY SUMMARY: Generation of human hepatocytes from stem cells represents an active research field but its success is hampered by the fact that the stem cell-derived 'hepatocytes' still show major differences to hepatocytes obtained from a liver. Here, we identified an important reason for the difference, specifically that the stem cell-derived 'hepatocyte' represents a hybrid cell with features of hepatocytes and intestinal cells. We show that a specific protein (FXR) suppresses intestinal and induces liver features, thus bringing the stem cell-derived cells closer to hepatocytes derived from human livers.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Diferenciación Celular , Hepatocitos/metabolismo , Humanos , Intestinos
5.
BMC Biol ; 18(1): 116, 2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32895052

RESUMEN

BACKGROUND: Colorectal cancer (CRC) development is generally accepted as a sequential process, with genetic mutations determining phenotypic tumor progression. However, matching genetic profiles with histological transition requires the analyses of temporal samples from the same patient at key stages of progression. RESULTS: Here, we compared the genetic profiles of 34 early carcinomas with their respective adenomatous precursors to assess timing and heterogeneity of driver alterations accompanying the switch from benign adenoma to malignant carcinoma. In almost half of the cases, driver mutations specific to the carcinoma stage were not observed. In samples where carcinoma-specific alterations were present, TP53 mutations and chromosome 20 copy gains commonly accompanied the switch from adenomatous tissue to carcinoma. Remarkably, 40% and 50% of high-grade adenomas shared TP53 mutations and chromosome 20 gains, respectively, with their matched carcinomas. In addition, multi-regional analyses revealed greater heterogeneity of driver mutations in adenomas compared to their matched carcinomas. CONCLUSION: Genetic alterations in TP53 and chromosome 20 occur at the earliest histological stage in colorectal carcinomas (pTis and pT1). However, high-grade adenomas can share these alterations despite their histological distinction. Based on the well-defined sequence of CRC development, we suggest that the timing of genetic changes during neoplastic progression is frequently uncoupled from histological progression.


Asunto(s)
Adenoma/patología , Carcinoma/patología , Transformación Celular Neoplásica/patología , Neoplasias Colorrectales/patología , Mutación , Adenoma/genética , Carcinoma/genética , Neoplasias Colorrectales/genética , Progresión de la Enfermedad , Humanos
6.
Int J Cancer ; 144(3): 569-581, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30252132

RESUMEN

Expression of the epidermal growth factor ligands amphiregulin (AREG) and epiregulin (EREG) is positively correlated with a response to EGFR-targeted therapies in colorectal cancer. Gene-body methylation sites, which show a strong inverse correlation with AREG and EREG gene expression, were identified in cell lines using targeted 454 FLX-bisulfite sequencing and SIRPH analyses for AREG/EREG promoters and intragenic CpGs. Upon treatment of colorectal cancer cells with 5-aza-2'-desoxycytidine, methylation decreases at specific intragenic CpGs accompanied by upregulation of AREG and EREG gene expression. The same AREG gene-body methylation was also found in human colorectal cancer samples and is independent of KRAS and NRAS mutations. Methylation is specifically decreased in the tumor epithelial compartment as compared to stromal tissue and normal epithelium. Investigation of a promoter/enhancer function of the AREG exon 2 region revealed a potential promoter function in reverse orientation. Retrospective comparison of the predictive power of AREG gene-body methylation versus AREG gene expression using samples from colorectal cancer patients treated with anti-EGFR inhibitors with complete clinical follow-up revealed that AREG expression is superior to AREG gene methylation. AREG and EREG genes undergo a complex regulation involving both intragenic methylation and promoter-dependent control.


Asunto(s)
Anfirregulina/genética , Neoplasias Colorrectales/genética , Epirregulina/genética , Anfirregulina/biosíntesis , Células CACO-2 , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Metilación de ADN , Epigénesis Genética , Células Epiteliales/metabolismo , Células Epiteliales/patología , Receptores ErbB/genética , Receptores ErbB/metabolismo , Expresión Génica , Células HCT116 , Humanos , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Estudios Retrospectivos , Células del Estroma/metabolismo , Células del Estroma/patología
7.
PLoS Genet ; 9(2): e1003250, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23408899

RESUMEN

Aberrant CpG methylation is a universal epigenetic trait of cancer cell genomes. However, human cancer samples or cell lines preclude the investigation of epigenetic changes occurring early during tumour development. Here, we have used MeDIP-seq to analyse the DNA methylome of APC(Min) adenoma as a model for intestinal cancer initiation, and we present a list of more than 13,000 recurring differentially methylated regions (DMRs) characterizing intestinal adenoma of the mouse. We show that Polycomb Repressive Complex (PRC) targets are strongly enriched among hypermethylated DMRs, and several PRC2 components and DNA methyltransferases were up-regulated in adenoma. We further demonstrate by bisulfite pyrosequencing of purified cell populations that the DMR signature arises de novo in adenoma cells rather than by expansion of a pre-existing pattern in intestinal stem cells or undifferentiated crypt cells. We found that epigenetic silencing of tumour suppressors, which occurs frequently in colon cancer, was rare in adenoma. Quite strikingly, we identified a core set of DMRs, which is conserved between mouse adenoma and human colon cancer, thus possibly revealing a global panel of epigenetically modified genes for intestinal tumours. Our data allow a distinction between early conserved epigenetic alterations occurring in intestinal adenoma and late stochastic events promoting colon cancer progression, and may facilitate the selection of more specific clinical epigenetic biomarkers.


Asunto(s)
Adenoma/genética , Neoplasias del Colon/genética , Metilación de ADN/genética , Neoplasias Intestinales/genética , Proteínas del Grupo Polycomb/genética , Adenoma/patología , Animales , Secuencia de Bases , Islas de CpG/genética , Epigenómica , Genoma , Humanos , Neoplasias Intestinales/patología , Ratones , Sintenía
8.
Bioinformatics ; 30(2): 284-6, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24227674

RESUMEN

MOTIVATION: DNA enrichment followed by sequencing is a versatile tool in molecular biology, with a wide variety of applications including genome-wide analysis of epigenetic marks and mechanisms. A common requirement of these diverse applications is a comparison of read coverage between experimental conditions. The amount of samples generated for such comparisons ranges from few replicates to hundreds of samples per condition for epigenome-wide association studies. Consequently, there is an urgent need for software that allows for fast and simple processing and comparison of sequencing data derived from enriched DNA. RESULTS: Here, we present a major update of the R/Bioconductor package MEDIPS, which allows for an arbitrary number of replicates per group and integrates sophisticated statistical methods for the detection of differential coverage between experimental conditions. Our approach can be applied to a diversity of quantitative sequencing data. In addition, our update adds novel functionality to MEDIPS, including correlation analysis between samples, and takes advantage of Bioconductor's annotation databases to facilitate annotation of specific genomic regions. AVAILABILITY AND IMPLEMENTATION: The latest version of MEDIPS is available as version 1.12.0 and part of Bioconductor 2.13. The package comes with a manual containing detailed description of its functionality and is available at http://www.bioconductor.org.


Asunto(s)
Metilación de ADN , Estudio de Asociación del Genoma Completo , Genómica/métodos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Adenoma/genética , Animales , Inmunoprecipitación de Cromatina , Islas de CpG , Proteínas de Unión al ADN/metabolismo , Bases de Datos Factuales , Epigenómica , Neoplasias Intestinales/genética , Ratones , Control de Calidad
9.
Cell Oncol (Dordr) ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300468

RESUMEN

PURPOSE: Single-cell transcriptional profiling reveals cell heterogeneity and clinically relevant traits in intra-operatively collected patient-derived tissue. So far, single-cell studies have been constrained by the requirement for prospectively collected fresh or cryopreserved tissue. This limitation might be overcome by recent technical developments enabling single-cell analysis of FFPE tissue. METHODS: We benchmark single-cell profiles from patient-matched fresh, cryopreserved and archival FFPE cancer tissue. RESULTS: We find that fresh tissue and FFPE routine blocks can be employed for the robust detection of clinically relevant traits on the single-cell level. Specifically, single-cell maps of fresh patient tissues and corresponding FFPE tissue blocks could be integrated into common low-dimensional representations, and cell subtype clusters showed highly correlated transcriptional strengths of signaling pathway, hallmark, and clinically useful signatures, although expression of single genes varied due to technological differences. FFPE tissue blocks revealed higher cell diversity compared to fresh tissue. In contrast, single-cell profiling of cryopreserved tissue was prone to artifacts in the clinical setting. CONCLUSION: Our analysis highlights the potential of single-cell profiling in the analysis of retrospectively and prospectively collected archival pathology cohorts and increases the applicability in translational research.

10.
Dev Biol ; 372(1): 55-67, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22995555

RESUMEN

The T-box transcription factor BRACHYURY (T) is a key regulator of mesoderm formation during early development. Complete loss of T has been shown to lead to embryonic lethality around E10.0. Here we characterize an inducible miRNA-based in vivo knockdown mouse model of T, termed KD3-T, which exhibits a hypomorphic phenotype. KD3-T embryos display axial skeletal defects caused by apoptosis of paraxial mesoderm, which is accompanied by urorectal malformations resembling the murine uro-recto-caudal syndrome and human caudal regression syndrome phenotypes. We show that there is a reduction of T in the notochord of KD3-T embryos which results in impaired notochord differentiation and its subsequent loss, whereas levels of T in the tailbud are sufficient for axis extension and patterning. Furthermore, the notochord in KD3-T embryos adopts a neural character and loses its ability to act as a signaling center. Since KD3-T animals survive until birth, they are useful for examining later roles for T in the development of urorectal tissues.


Asunto(s)
Anomalías del Sistema Digestivo/genética , Proteínas Fetales/genética , Siringomielia/genética , Proteínas de Dominio T Box/genética , Anomalías Múltiples , Canal Anal/anomalías , Canal Anal/metabolismo , Animales , Apoptosis , Diferenciación Celular , Anomalías del Sistema Digestivo/metabolismo , Modelos Animales de Enfermedad , Embrión de Mamíferos/metabolismo , Femenino , Proteínas Fetales/metabolismo , Técnica del Anticuerpo Fluorescente , Regulación del Desarrollo de la Expresión Génica , Meningocele , Ratones , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Fenotipo , Recto/anomalías , Recto/metabolismo , Región Sacrococcígea/anomalías , Sacro/anomalías , Sacro/metabolismo , Siringomielia/metabolismo , Proteínas de Dominio T Box/metabolismo
11.
PLoS Genet ; 6(12): e1001231, 2010 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-21170361

RESUMEN

Transcriptional signatures are an indispensible source of correlative information on disease-related molecular alterations on a genome-wide level. Numerous candidate genes involved in disease and in factors of predictive, as well as of prognostic, value have been deduced from such molecular portraits, e.g. in cancer. However, mechanistic insights into the regulatory principles governing global transcriptional changes are lagging behind extensive compilations of deregulated genes. To identify regulators of transcriptome alterations, we used an integrated approach combining transcriptional profiling of colorectal cancer cell lines treated with inhibitors targeting the receptor tyrosine kinase (RTK)/RAS/mitogen-activated protein kinase pathway, computational prediction of regulatory elements in promoters of co-regulated genes, chromatin-based and functional cellular assays. We identified commonly co-regulated, proliferation-associated target genes that respond to the MAPK pathway. We recognized E2F and NFY transcription factor binding sites as prevalent motifs in those pathway-responsive genes and confirmed the predicted regulatory role of Y-box binding protein 1 (YBX1) by reporter gene, gel shift, and chromatin immunoprecipitation assays. We also validated the MAPK-dependent gene signature in colorectal cancers and provided evidence for the association of YBX1 with poor prognosis in colorectal cancer patients. This suggests that MEK/ERK-dependent, YBX1-regulated target genes are involved in executing malignant properties.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Regulación Neoplásica de la Expresión Génica , Genes Reguladores , Sistema de Señalización de MAP Quinasas , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteína 1 de Unión a la Caja Y/metabolismo , Línea Celular Tumoral , Neoplasias Colorrectales/enzimología , Neoplasias Colorrectales/genética , Perfilación de la Expresión Génica , Humanos , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Proteína 1 de Unión a la Caja Y/genética
12.
J Cell Biol ; 222(6)2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37017636

RESUMEN

Colorectal cancer progression is intrinsically linked to stepwise deregulation of the intestinal differentiation trajectory. In this process, sequential mutations of APC, KRAS, TP53, and SMAD4 enable oncogenic signaling and establish the hallmarks of cancer. Here, we use mass cytometry of isogenic human colon organoids and patient-derived cancer organoids to capture oncogenic signaling, cell phenotypes, and differentiation states in a high-dimensional single-cell map. We define a differentiation axis in all tumor progression states from normal to cancer. Our data show that colorectal cancer driver mutations shape the distribution of cells along the differentiation axis. In this regard, subsequent mutations can have stem cell promoting or restricting effects. Individual nodes of the cancer cell signaling network remain coupled to the differentiation state, regardless of the presence of driver mutations. We use single-cell RNA sequencing to link the (phospho-)protein signaling network to transcriptomic states with biological and clinical relevance. Our work highlights how oncogenes gradually shape signaling and transcriptomes during tumor progression.


Asunto(s)
Diferenciación Celular , Neoplasias Colorrectales , Oncogenes , Transducción de Señal , Humanos , Neoplasias Colorrectales/genética , Intestinos , Mutación
13.
Int J Cancer ; 131(10): 2242-52, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22344573

RESUMEN

Cellular hierarchies and signals that govern stemness and differentiation of intestinal adenoma cells are not well defined. In this study, we used organotypic culture to investigate the impact of ß-catenin and BMP signals in cells that form intestinal adenoma in the mouse. We found that activation of ß-catenin signaling by loss of APC or transgenic induction of oncogenic mutant ß-catenin (Ctnnb1(mut) ) initiates the conversion of untransformed intestinal cells to tumor cells. These tumor cells display cancer stem cell (CSC) traits such as increased expression of the CSC markers Cd133 and Cd44, a high capacity for self-renewal and unlimited proliferative potential. Subsequent inactivation of transgenic Ctnnb1(mut) results in the reversion of tumor cells to normal intestinal stem cells, which immediately reinstall the cellular hierarchy of the normal intestinal epithelium. Our data demonstrate that oncogenic activation of ß-catenin signaling initiates the early steps of intestinal cellular transformation in the absence of irreversible genetic or epigenetic changes. Interestingly, we found that tumor cells in culture and in adenoma produce BMP4, which counteracts CSC-like traits by initiating irreversible cellular differentiation and loss of self-renewal capacity. We conclude that the opposition of stemness-maintaining oncogenic ß-catenin signals and autocrine differentiating BMP signals within the adenoma cell provides a rationale for the formation of cellular hierarchies in intestinal adenoma and may serve to limit adenoma growth.


Asunto(s)
Adenoma/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/patología , Transducción de Señal , Proteínas Wnt/metabolismo , Adenoma/genética , Animales , Proteínas Morfogenéticas Óseas/genética , Diferenciación Celular/genética , Regulación Neoplásica de la Expresión Génica , Ratones , Ratones Transgénicos , Mutación , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/metabolismo , Esferoides Celulares , Células Tumorales Cultivadas , beta Catenina/genética , beta Catenina/metabolismo
14.
J Cell Biol ; 177(1): 151-62, 2007 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-17403932

RESUMEN

Wound healing of the skin is a crucial regenerative process in adult mammals. We examined wound healing in conditional mutant mice, in which the c-Met gene that encodes the receptor of hepatocyte growth factor/scatter factor was mutated in the epidermis by cre recombinase. c-Met-deficient keratinocytes were unable to contribute to the reepithelialization of skin wounds. In conditional c-Met mutant mice, wound closure was slightly attenuated, but occurred exclusively by a few (5%) keratinocytes that had escaped recombination. This demonstrates that the wound process selected and amplified residual cells that express a functional c-Met receptor. We also cultured primary keratinocytes from the skin of conditional c-Met mutant mice and examined them in scratch wound assays. Again, closure of scratch wounds occurred by the few remaining c-Met-positive cells. Our data show that c-Met signaling not only controls cell growth and migration during embryogenesis but is also essential for the generation of the hyperproliferative epithelium in skin wounds, and thus for a fundamental regenerative process in the adult.


Asunto(s)
Proteínas Proto-Oncogénicas c-met/fisiología , Fenómenos Fisiológicos de la Piel , Cicatrización de Heridas/fisiología , Animales , Comunicación Autocrina , Células Cultivadas , Factor de Crecimiento de Hepatocito/metabolismo , Integrasas/metabolismo , Queratinocitos/citología , Queratinocitos/metabolismo , Queratinocitos/fisiología , Ratones , Ratones Endogámicos , Mutación , Proteínas Proto-Oncogénicas c-met/genética , Transducción de Señal , Cicatrización de Heridas/genética
15.
Nucleic Acids Res ; 38(11): e122, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20350929

RESUMEN

Functional analysis of multiple genes is key to understanding gene regulatory networks controlling embryonic development. We have developed an integrated vector system for inducible gene silencing by shRNAmir-mediated RNA interference in mouse embryos, as a fast method for dissecting mammalian gene function. For validation of the vector system, we generated mutant phenotypes for Brachyury, Foxa2 and Noto, transcription factors which play pivotal roles in embryonic development. Using a series of Brachyury shRNAmir vectors of various strengths we generated hypomorphic and loss of function phenotypes allowing the identification of Brachyury target genes involved in trunk development. We also demonstrate temporal control of gene silencing, thus bypassing early embryonic lethality. Importantly, off-target effects of shRNAmir expression were not detectable. Taken together, the system allows the dissection of gene function at unprecedented detail and speed, and provides tight control of the genetic background minimizing intrinsic variation.


Asunto(s)
Desarrollo Embrionario/genética , Interferencia de ARN , Animales , Células Cultivadas , Embrión de Mamíferos/metabolismo , Perfilación de la Expresión Génica , Vectores Genéticos , Ratones , Ratones Endogámicos C57BL , Mutación , Fenotipo , Factores de Transcripción/genética , Transgenes
16.
Mol Cancer Ther ; 21(5): 799-809, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35247930

RESUMEN

Current treatment options for patients with advanced colorectal cancers include anti-EGFR/HER1 therapy with the blocking antibody cetuximab. Although a subset of patients with KRAS WT disease initially respond to the treatment, resistance develops in almost all cases. Relapse has been associated with the production of the ligand heregulin (HRG) and/or compensatory signaling involving the receptor tyrosine kinases HER2 and HER3. Here, we provide evidence that triple-HER receptor blockade based on a newly developed bispecific EGFR×HER3-targeting antibody (scDb-Fc) together with the HER2-blocking antibody trastuzumab effectively inhibited HRG-induced HER receptor phosphorylation, downstream signaling, proliferation, and stem cell expansion of DiFi and LIM1215 colorectal cancer cells. Comparative analyses revealed that the biological activity of scDb-Fc plus trastuzumab was sometimes even superior to that of the combination of the parental antibodies, with PI3K/Akt pathway inhibition correlating with improved therapeutic response and apoptosis induction as seen by single-cell analysis. Importantly, growth suppression by triple-HER targeting was recapitulated in primary KRAS WT patient-derived organoid cultures exposed to HRG. Collectively, our results provide strong support for a pan-HER receptor blocking approach to combat anti-EGFR therapy resistance of KRAS WT colorectal cancer tumors mediated by the upregulation of HRG and/or HER2/HER3 signaling.


Asunto(s)
Neoplasias Colorrectales , Neurregulina-1 , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Resistencia a Antineoplásicos , Receptores ErbB/metabolismo , Humanos , Recurrencia Local de Neoplasia , Neurregulina-1/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Receptor ErbB-2/metabolismo , Receptor ErbB-3 , Trastuzumab/farmacología
17.
Genome Med ; 14(1): 24, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35227293

RESUMEN

BACKGROUND: Pancreatic neuroendocrine neoplasms (PanNENs) fall into two subclasses: the well-differentiated, low- to high-grade pancreatic neuroendocrine tumors (PanNETs), and the poorly-differentiated, high-grade pancreatic neuroendocrine carcinomas (PanNECs). While recent studies suggest an endocrine descent of PanNETs, the origin of PanNECs remains unknown. METHODS: We performed DNA methylation analysis for 57 PanNEN samples and found that distinct methylation profiles separated PanNENs into two major groups, clearly distinguishing high-grade PanNECs from other PanNETs including high-grade NETG3. DNA alterations and immunohistochemistry of cell-type markers PDX1, ARX, and SOX9 were utilized to further characterize PanNECs and their cell of origin in the pancreas. RESULTS: Phylo-epigenetic and cell-type signature features derived from alpha, beta, acinar, and ductal adult cells suggest an exocrine cell of origin for PanNECs, thus separating them in cell lineage from other PanNENs of endocrine origin. CONCLUSIONS: Our study provides a robust and clinically applicable method to clearly distinguish PanNECs from G3 PanNETs, improving patient stratification.


Asunto(s)
Carcinoma Neuroendocrino , Tumores Neuroendocrinos , Neoplasias Pancreáticas , Adulto , Carcinoma Neuroendocrino/genética , Carcinoma Neuroendocrino/patología , Metilación de ADN , Humanos , Clasificación del Tumor , Tumores Neuroendocrinos/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología
18.
Nat Commun ; 13(1): 5878, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36198679

RESUMEN

The human gastric epithelium forms highly organized gland structures with different subtypes of cells. The carcinogenic bacterium Helicobacter pylori can attach to gastric cells and subsequently translocate its virulence factor CagA, but the possible host cell tropism of H. pylori is currently unknown. Here, we report that H. pylori preferentially attaches to differentiated cells in the pit region of gastric units. Single-cell RNA-seq shows that organoid-derived monolayers recapitulate the pit region, while organoids capture the gland region of the gastric units. Using these models, we show that H. pylori preferentially attaches to highly differentiated pit cells, marked by high levels of GKN1, GKN2 and PSCA. Directed differentiation of host cells enable enrichment of the target cell population and confirm H. pylori preferential attachment and CagA translocation into these cells. Attachment is independent of MUC5AC or PSCA expression, and instead relies on bacterial TlpB-dependent chemotaxis towards host cell-released urea, which scales with host cell size.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Hormonas Peptídicas , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Quimiotaxis , Mucosa Gástrica/metabolismo , Infecciones por Helicobacter/microbiología , Helicobacter pylori/metabolismo , Humanos , Hormonas Peptídicas/metabolismo , Tropismo , Urea/metabolismo , Factores de Virulencia/metabolismo
19.
Cancer Res ; 81(1): 38-49, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33154092

RESUMEN

Genetic predisposition affects the penetrance of tumor-initiating mutations, such as APC mutations that stabilize ß-catenin and cause intestinal tumors in mice and humans. However, the mechanisms involved in genetically predisposed penetrance are not well understood. Here, we analyzed tumor multiplicity and gene expression in tumor-prone Apc Min/+ mice on highly variant C57BL/6J (B6) and PWD/Ph (PWD) genetic backgrounds. (B6 × PWD) F1 APC Min offspring mice were largely free of intestinal adenoma, and several chromosome substitution (consomic) strains carrying single PWD chromosomes on the B6 genetic background displayed reduced adenoma numbers. Multiple dosage-dependent modifier loci on PWD chromosome 5 each contributed to tumor suppression. Activation of ß-catenin-driven and stem cell-specific gene expression in the presence of Apc Min or following APC loss remained moderate in intestines carrying PWD chromosome 5, suggesting that PWD variants restrict adenoma initiation by controlling stem cell homeostasis. Gene expression of modifier candidates and DNA methylation on chromosome 5 were predominantly cis controlled and largely reflected parental patterns, providing a genetic basis for inheritance of tumor susceptibility. Human SNP variants of several modifier candidates were depleted in colorectal cancer genomes, suggesting that similar mechanisms may also affect the penetrance of cancer driver mutations in humans. Overall, our analysis highlights the strong impact that multiple genetic variants acting in networks can exert on tumor development. SIGNIFICANCE: These findings in mice show that, in addition to accidental mutations, cancer risk is determined by networks of individual gene variants.


Asunto(s)
Transformación Celular Neoplásica/patología , Neoplasias Colorrectales/prevención & control , Genes APC , Intestinos/patología , Mutación , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Predisposición Genética a la Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Wnt/genética , beta Catenina/genética
20.
Oncogene ; 40(50): 6748-6758, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34663877

RESUMEN

Recent developments in immuno-oncology demonstrate that not only cancer cells, but also the tumor microenvironment can guide precision medicine. A comprehensive and in-depth characterization of the tumor microenvironment is challenging since its cell populations are diverse and can be important even if scarce. To identify clinically relevant microenvironmental and cancer features, we applied single-cell RNA sequencing to ten human lung adenocarcinomas and ten normal control tissues. Our analyses revealed heterogeneous carcinoma cell transcriptomes reflecting histological grade and oncogenic pathway activities, and two distinct microenvironmental patterns. The immune-activated CP²E microenvironment was composed of cancer-associated myofibroblasts, proinflammatory monocyte-derived macrophages, plasmacytoid dendritic cells and exhausted CD8+ T cells, and was prognostically unfavorable. In contrast, the inert N³MC microenvironment was characterized by normal-like myofibroblasts, non-inflammatory monocyte-derived macrophages, NK cells, myeloid dendritic cells and conventional T cells, and was associated with a favorable prognosis. Microenvironmental marker genes and signatures identified in single-cell profiles had progonostic value in bulk tumor profiles. In summary, single-cell RNA profiling of lung adenocarcinoma provides additional prognostic information based on the microenvironment, and may help to predict therapy response and to reveal possible target cell populations for future therapeutic approaches.


Asunto(s)
Adenocarcinoma del Pulmón/patología , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/patología , Análisis de la Célula Individual/métodos , Transcriptoma , Microambiente Tumoral , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/metabolismo , Biomarcadores de Tumor/genética , Linfocitos T CD8-positivos/inmunología , Perfilación de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Pronóstico , Tasa de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA