Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Development ; 147(6)2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32179574

RESUMEN

Precise temporal coordination of signaling processes is pivotal for cellular differentiation during embryonic development. A vast number of secreted molecules are produced and released by cells and tissues, and travel in the extracellular space. Whether they induce a signaling pathway and instruct cell fate, however, depends on a complex network of regulatory mechanisms, which are often not well understood. The conserved bilateral left-right asymmetrically formed habenulae of the zebrafish are an excellent model for investigating how signaling control facilitates the generation of defined neuronal populations. Wnt signaling is required for habenular neuron type specification, asymmetry and axonal connectivity. The temporal regulation of this pathway and the players involved have, however, have remained unclear. We find that tightly regulated temporal restriction of Wnt signaling activity in habenular precursor cells is crucial for the diversity and asymmetry of habenular neuron populations. We suggest a feedback mechanism whereby the tumor suppressor Wnt inhibitory factor Wif1 controls the Wnt dynamics in the environment of habenular precursor cells. This mechanism might be common to other cell types, including tumor cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Tipificación del Cuerpo/genética , Habénula/embriología , Neurogénesis/genética , Neuronas/fisiología , Proteínas Represoras/fisiología , Vía de Señalización Wnt/fisiología , Proteínas de Pez Cebra/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Animales Modificados Genéticamente , Encéfalo/citología , Encéfalo/embriología , Diferenciación Celular/genética , Linaje de la Célula/genética , Dominancia Cerebral/genética , Embrión no Mamífero , Habénula/metabolismo , Neurogénesis/fisiología , Neuronas/citología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
2.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37047777

RESUMEN

Among multiple cytoprotective mechanisms, eukaryotic cells exhibit a complex transcriptional program relying on the Nrf2 transcription factor, which is generally recruited upon biological stressors including oxidative-stress-based cellular insults. The relevance of this master regulator has remarkably emerged in recent years in several research fields such as cancer, inflammatory disorders and age-related neurological diseases. Here, we document the generation and characterization of a novel Nrf2/ARE pathway biosensor fish which exhibits a dynamic spatiotemporal expression profile during the early developmental stages. The transgenic line is responsive to known Nrf2 pathway modulators but also to Edaravone, which direct activity on the Nrf2 pathway has never been documented in a live transgenic fish model. We also show that the reporter is faithfully activated during fin regeneration, and its degree of expression is slightly affected in a glucocerebrosidase (Gba1) morphant zebrafish model. Therefore, this novel transgenic fish may represent a valuable tool to be exploited for the characterization of zebrafish models of human diseases, as well as for primary high-throughput drug screening.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Pez Cebra , Animales , Humanos , Pez Cebra/genética , Pez Cebra/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/genética , Animales Modificados Genéticamente/genética , Antioxidantes/metabolismo , Proteínas de Pez Cebra/metabolismo
3.
Hum Mol Genet ; 29(2): 274-285, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31816052

RESUMEN

Bone differentiation defects have been recently tied to Wnt signaling alterations occurring in vitro and in vivo Gaucher disease (GD) models. In this work, we provide evidence that the Wnt signaling multi-domain intracellular transducers Dishevelled 1 and 2 (DVL1 and DVL2) may be potential upstream targets of impaired beta glucosidase (GBA1) activity by showing their misexpression in different type 1 GD in vitro models. We also show that in Gba mutant fish a miR-221 upregulation is associated with reduced dvl2 expression levels and that in type I Gaucher patients single-nucleotide variants in the DVL2 3' untranslated region are related to variable canonical Wnt pathway activity. Thus, we strengthen the recently outlined relation between bone differentiation defects and Wnt/ß-catenin dysregulation in type I GD and further propose novel mechanistic insights of the Wnt pathway impairment caused by glucocerebrosidase loss of function.


Asunto(s)
Proteínas Dishevelled/metabolismo , Enfermedad de Gaucher/metabolismo , Glucosilceramidasa/metabolismo , Vía de Señalización Wnt/genética , Pez Cebra/metabolismo , Regiones no Traducidas 3' , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Animales Modificados Genéticamente , Línea Celular , Modelos Animales de Enfermedad , Proteínas Dishevelled/genética , Enfermedad de Gaucher/enzimología , Enfermedad de Gaucher/genética , Glucosilceramidasa/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Osteoblastos/enzimología , Osteoblastos/metabolismo , Osteoblastos/patología , Transcripción Genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
4.
Hum Mol Genet ; 27(R2): R119-R129, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29718288

RESUMEN

There is growing evidence that the complex clinical manifestations of lysosomal storage diseases (LSDs) are not fully explained by the engorgement of the endosomal-autophagic-lysosomal system. In this review, we explore current knowledge of common pathogenetic mechanisms responsible for the early onset of tissue abnormalities of two LSDs, Mucopolysaccharidosis type II (MPSII) and Niemann-Pick type C (NPC) diseases. In particular, perturbations of the homeostasis of glycosaminoglycans (GAGs) and cholesterol (Chol) in MPSII and NPC diseases, respectively, affect key biological processes, including morphogen signaling. Both GAGs and Chol finely regulate the release, reception and tissue distribution of Shh. Hence, not surprisingly, developmental processes depending on correct Shh signaling have been found altered in both diseases. Besides abnormal signaling, exaggerated activation of microglia and impairment of autophagy and mitophagy occur in both diseases, largely before the appearance of typical pathological signs.


Asunto(s)
Enfermedades por Almacenamiento Lisosomal/fisiopatología , Lisosomas/patología , Animales , Autofagia , Colesterol/metabolismo , Endocitosis , Endosomas/patología , Glicosaminoglicanos/metabolismo , Proteínas Hedgehog/fisiología , Homeostasis , Humanos , Enfermedades por Almacenamiento Lisosomal/metabolismo , Lisosomas/fisiología , Mitofagia , Mucopolisacaridosis II/patología , Neuroinmunomodulación/inmunología , Neuroinmunomodulación/fisiología , Enfermedad de Niemann-Pick Tipo C/patología , Vía de Señalización Wnt/fisiología
5.
Hum Mol Genet ; 27(13): 2262-2275, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29648648

RESUMEN

Skeletal abnormalities represent a major clinical burden in patients affected by the lysosomal storage disorder mucopolysaccharidosis type II (MPSII, OMIM #309900). While extensive research has emphasized the detrimental role of stored glycosaminoglycans (GAGs) in the bone marrow (BM), a limited understanding of primary cellular mechanisms underlying bone defects in MPSII has hampered the development of bone-targeted therapeutic strategies beyond enzyme replacement therapy (ERT). We here investigated the involvement of key signaling pathways related to the loss of iduronate-2-sulfatase activity in two different MPSII animal models, D. rerio and M. musculus. We found that FGF pathway activity is impaired during early stages of bone development in IDS knockout mice and in a newly generated Ids mutant fish. In both models the FGF signaling deregulation anticipated a slow but progressive defect in bone differentiation, regardless of any extensive GAGs storage. We also show that MPSII patient fibroblasts harboring different mutations spanning the IDS gene exhibit perturbed FGF signaling-related markers expression. Our work opens a new venue to discover possible druggable novel key targets in MPSII.


Asunto(s)
Encéfalo/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Iduronato Sulfatasa/genética , Mucopolisacaridosis II/genética , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Terapia de Reemplazo Enzimático , Regulación de la Expresión Génica , Glicosaminoglicanos/genética , Humanos , Iduronato Sulfatasa/uso terapéutico , Ratones , Ratones Noqueados , Mucopolisacaridosis II/patología , Transducción de Señal , Pez Cebra/genética
6.
Hum Mol Genet ; 26(9): 1643-1655, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28334757

RESUMEN

Morphogens release and activity can be negatively affected by an impaired glycosaminoglycans (GAGs) turnover and proteoglycans assembly in the extracellular matrix, leading to altered tissue morphogenesis. In this work, we show that loss of Iduronate-2-sulfatase (IDS) activity, affecting GAGs catabolism and responsible for a life-threatening valvulopathy in mucopolysaccharidosis type II (MPSII), triggers early Sonic Hedgehog (Shh) and Wnt/ß-catenin signaling defects, leading to aberrant heart development and atrioventricular valve formation in a zebrafish model. In addition, we consistently found impaired Shh signaling activity and cardiac electrophysiological abnormalities in IDS knockout mice at postnatal stages before any evident massive GAGs accumulation. These results suggest that IDS activity substantially affect cardiac morphogenesis through impaired Shh signaling and document an unexplored role of the enzyme in the fine-tuning of cell signaling pathways.


Asunto(s)
Glicoproteínas/metabolismo , Mucopolisacaridosis II/metabolismo , Animales , Modelos Animales de Enfermedad , Glicosaminoglicanos/metabolismo , Proteínas Hedgehog/metabolismo , Iduronato Sulfatasa , Ratones , Ratones Noqueados , Miocardio/citología , Miocardio/metabolismo , Proteoglicanos/metabolismo , Vía de Señalización Wnt , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo , beta Catenina
7.
Hum Mol Genet ; 24(5): 1280-94, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25326392

RESUMEN

Loss of lysosomal glucocerebrosidase (GBA1) function is responsible for several organ defects, including skeletal abnormalities in type 1 Gaucher disease (GD). Enhanced bone resorption by infiltrating macrophages has been proposed to lead to major bone defects. However, while more recent evidences support the hypothesis that osteoblastic bone formation is impaired, a clear pathogenetic mechanism has not been depicted yet. Here, by combining different molecular approaches, we show that Gba1 loss of function in zebrafish is associated with defective canonical Wnt signaling, impaired osteoblast differentiation and reduced bone mineralization. We also provide evidence that increased reactive oxygen species production precedes the Wnt signaling impairment, which can be reversed upon human GBA1 overexpression. Type 1 GD patient fibroblasts similarly exhibit reduced Wnt signaling activity, as a consequence of increased ß-catenin degradation. Our results support a novel model in which a primary defect in canonical Wnt signaling antecedes bone defects in type 1 GD.


Asunto(s)
Enfermedad de Gaucher/genética , Osteogénesis/genética , Estrés Oxidativo , Vía de Señalización Wnt , Pez Cebra/genética , Animales , Apoptosis , Biomarcadores/sangre , Resorción Ósea/genética , Resorción Ósea/metabolismo , Huesos/metabolismo , Diferenciación Celular , Proliferación Celular , Clonación Molecular , Modelos Animales de Enfermedad , Enfermedad de Gaucher/patología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Técnicas de Genotipaje , Glucosilceramidasa/genética , Humanos , Osteoblastos/citología , Osteoblastos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Pez Cebra/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
8.
Development ; 141(18): 3529-39, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25183871

RESUMEN

Canonical ß-catenin-dependent Wnt signal transduction is important for several biological phenomena, such as cell fate determination, cell proliferation, stem cell maintenance and anterior-posterior axis formation. The hallmark of canonical Wnt signaling is the translocation of ß-catenin into the nucleus where it activates gene transcription. However, the mechanisms regulating ß-catenin nuclear localization are poorly understood. We show that Simplet/Fam53B (Smp) is required for Wnt signaling by positively regulating ß-catenin nuclear localization. In the zebrafish embryo, the loss of smp blocks the activity of two ß-catenin-dependent reporters and the expression of Wnt target genes, and prevents nuclear accumulation of ß-catenin. Conversely, overexpression of smp increases ß-catenin nuclear localization and transcriptional activity in vitro and in vivo. Expression of mutant Smp proteins lacking either the nuclear localization signal or the ß-catenin interaction domain reveal that the translocation of Smp into the nucleus is essential for ß-catenin nuclear localization and Wnt signaling in vivo. We also provide evidence that mammalian Smp is involved in regulating ß-catenin nuclear localization: the protein colocalizes with ß-catenin-dependent gene expression in mouse intestinal crypts; siRNA knockdown of Smp reduces ß-catenin nuclear localization and transcriptional activity; human SMP mediates ß-catenin transcriptional activity in a dose-dependent manner; and the human SMP protein interacts with human ß-catenin primarily in the nucleus. Thus, our findings identify the evolutionary conserved SMP protein as a regulator of ß-catenin-dependent Wnt signal transduction.


Asunto(s)
Núcleo Celular/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo , Animales , Western Blotting , Humanos , Inmunohistoquímica , Inmunoprecipitación , Hibridación in Situ , Luciferasas , Ratones , Ratones Transgénicos , Interferencia de ARN , ARN Interferente Pequeño/genética , Proteínas Wnt/genética
9.
Development ; 140(22): 4594-601, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24131633

RESUMEN

The notochord is a transient and essential structure that provides both mechanical and signaling cues to the developing vertebrate embryo. In teleosts, the notochord is composed of a core of large vacuolated cells and an outer layer of cells that secrete the notochord sheath. In this work, we have identified the extracellular matrix glycoprotein Emilin3 as a novel essential component of the zebrafish notochord sheath. The development of the notochord sheath is impaired in Emilin3 knockdown embryos. The patterning activity of the notochord is also affected by Emilin3, as revealed by the increase of Hedgehog (Hh) signaling in Emilin3-depleted embryos and the decreased Hh signaling in embryos overexpressing Emilin3 in the notochord. In vitro and in vivo experiments indicate that Emilin3 modulates the availability of Hh ligands by interacting with the permissive factor Scube2 in the notochord sheath. Overall, this study reveals a new role for an EMILIN protein and reinforces the concept that structure and function of the notochord are strictly linked.


Asunto(s)
Antígenos de Superficie/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Proteínas Hedgehog/metabolismo , Glicoproteínas de Membrana/metabolismo , Notocorda/metabolismo , Transducción de Señal , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Tipificación del Cuerpo/efectos de los fármacos , Tipificación del Cuerpo/genética , Regulación hacia Abajo/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Embrión no Mamífero/ultraestructura , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Ratones , Modelos Biológicos , Morfolinos/farmacología , Notocorda/citología , Notocorda/efectos de los fármacos , Notocorda/embriología , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Regulación hacia Arriba/efectos de los fármacos
10.
Dev Biol ; 396(1): 81-93, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25286120

RESUMEN

TGF-beta (TGFß) family mediated Smad signaling is involved in mesoderm and endoderm specifications, left-right asymmetry formation and neural tube development. The TGFß1/2/3 and Activin/Nodal signal transduction cascades culminate with activation of SMAD2 and/or SMAD3 transcription factors and their overactivation are involved in different pathologies with an inflammatory and/or uncontrolled cell proliferation basis, such as cancer and fibrosis. We have developed a transgenic zebrafish reporter line responsive to Smad3 activity. Through chemical, genetic and molecular approaches we have seen that this transgenic line consistently reproduces in vivo Smad3-mediated TGFß signaling. Reporter fluorescence is activated in phospho-Smad3 positive cells and is responsive to both Smad3 isoforms, Smad3a and 3b. Moreover, Alk4 and Alk5 inhibitors strongly repress the reporter activity. In the CNS, Smad3 reporter activity is particularly high in the subpallium, tegumentum, cerebellar plate, medulla oblongata and the retina proliferative zone. In the spinal cord, the reporter is activated at the ventricular zone, where neuronal progenitor cells are located. Colocalization methods show in vivo that TGFß signaling is particularly active in neuroD+ precursors. Using neuronal transgenic lines, we observed that TGFß chemical inhibition leads to a decrease of differentiating cells and an increase of proliferation. Similarly, smad3a and 3b knock-down alter neural differentiation showing that both paralogues play a positive role in neural differentiation. EdU proliferation assay and pH3 staining confirmed that Smad3 is mainly active in post-mitotic, non-proliferating cells. In summary, we demonstrate that the Smad3 reporter line allows us to follow in vivo Smad3 transcriptional activity and that Smad3, by controlling neural differentiation, promotes the progenitor to precursor switch allowing neural progenitors to exit cell cycle and differentiate.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteína smad3/genética , Médula Espinal/embriología , Factor de Crecimiento Transformador beta/metabolismo , Transgenes , Proteínas de Pez Cebra/genética , Receptores de Activinas Tipo I/metabolismo , Animales , Animales Modificados Genéticamente , Ciclo Celular , Proliferación Celular , Genes Reporteros , Inmunohistoquímica , Neuronas/metabolismo , Fenotipo , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal , Médula Espinal/fisiología , Pez Cebra , Proteínas de Pez Cebra/metabolismo
12.
Development ; 138(18): 3931-41, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21862557

RESUMEN

During tissue morphogenesis and differentiation, cells must self-renew while contemporaneously generating daughters that contribute to the growing tissue. How tissues achieve this precise balance between proliferation and differentiation is, in most instances, poorly understood. This is in part due to the difficulties in dissociating the mechanisms that underlie tissue patterning from those that regulate proliferation. In the migrating posterior lateral line primordium (PLLP), proliferation is predominantly localised to the leading zone. As cells emerge from this zone, they periodically organise into rosettes that subsequently dissociate from the primordium and differentiate as neuromasts. Despite this reiterative loss of cells, the primordium maintains its size through regenerative cell proliferation until it reaches the tail. In this study, we identify a null mutation in the Wnt-pathway transcription factor Lef1 and show that its activity is required to maintain proliferation in the progenitor pool of cells that sustains the PLLP as it undergoes migration, morphogenesis and differentiation. In absence of Lef1, the leading zone becomes depleted of cells during its migration leading to the collapse of the primordium into a couple of terminal neuromasts. We show that this behaviour resembles the process by which the PLLP normally ends its migration, suggesting that suppression of Wnt signalling is required for termination of neuromast production in the tail. Our data support a model in which Lef1 sustains proliferation of leading zone progenitors, maintaining the primordium size and defining neuromast deposition rate.


Asunto(s)
Proliferación Celular , Homeostasis/genética , Sistema de la Línea Lateral/embriología , Factores de Transcripción/fisiología , Proteínas Wnt/fisiología , Proteínas de Pez Cebra/fisiología , beta Catenina/fisiología , Aletas de Animales/embriología , Aletas de Animales/crecimiento & desarrollo , Aletas de Animales/metabolismo , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/genética , Diferenciación Celular/genética , Embrión no Mamífero , Homeostasis/fisiología , Sistema de la Línea Lateral/metabolismo , Masculino , Morfogénesis/genética , Morfogénesis/fisiología , Mutación/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Pez Cebra/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
13.
Cell Death Dis ; 15(4): 269, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627369

RESUMEN

Most of the patients affected by neuronopathic forms of Mucopolysaccharidosis type II (MPS II), a rare lysosomal storage disorder caused by defects in iduronate-2-sulfatase (IDS) activity, exhibit early neurological defects associated with white matter lesions and progressive behavioural abnormalities. While neuronal degeneration has been largely described in experimental models and human patients, more subtle neuronal pathogenic defects remain still underexplored. In this work, we discovered that the axon guidance receptor Deleted in Colorectal Cancer (Dcc) is significantly dysregulated in the brain of ids mutant zebrafish since embryonic stages. In addition, thanks to the establishment of neuronal-enriched primary cell cultures, we identified defective proteasomal degradation as one of the main pathways underlying Dcc upregulation in ids mutant conditions. Furthermore, ids mutant fish-derived primary neurons displayed higher levels of polyubiquitinated proteins and P62, suggesting a wider defect in protein degradation. Finally, we show that ids mutant larvae display an atypical response to anxiety-inducing stimuli, hence mimicking one of the characteristic features of MPS II patients. Our study provides an additional relevant frame to MPS II pathogenesis, supporting the concept that multiple developmental defects concur with early childhood behavioural abnormalities.


Asunto(s)
Iduronato Sulfatasa , Mucopolisacaridosis II , Enfermedades del Sistema Nervioso , Animales , Orientación del Axón , Encéfalo/metabolismo , Iduronato Sulfatasa/metabolismo , Mucopolisacaridosis II/metabolismo , Enfermedades del Sistema Nervioso/patología , Pez Cebra/metabolismo
14.
Biomolecules ; 14(4)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38672460

RESUMEN

A considerable effort has been spent in the past decades to develop targeted therapies for the treatment of demyelinating diseases, such as multiple sclerosis (MS). Among drugs with free radical scavenging activity and oligodendrocyte protecting effects, Edaravone (Radicava) has recently received increasing attention because of being able to enhance remyelination in experimental in vitro and in vivo disease models. While its beneficial effects are greatly supported by experimental evidence, there is a current paucity of information regarding its mechanism of action and main molecular targets. By using high-throughput RNA-seq and biochemical experiments in murine oligodendrocyte progenitors and SH-SY5Y neuroblastoma cells combined with molecular docking and molecular dynamics simulation, we here provide evidence that Edaravone triggers the activation of aryl hydrocarbon receptor (AHR) signaling by eliciting AHR nuclear translocation and the transcriptional-mediated induction of key cytoprotective gene expression. We also show that an Edaravone-dependent AHR signaling transduction occurs in the zebrafish experimental model, associated with a downstream upregulation of the NRF2 signaling pathway. We finally demonstrate that its rapid cytoprotective and antioxidant actions boost increased expression of the promyelinating Olig2 protein as well as of an Olig2:GFP transgene in vivo. We therefore shed light on a still undescribed potential mechanism of action for this drug, providing further support to its therapeutic potential in the context of debilitating demyelinating conditions.


Asunto(s)
Antioxidantes , Edaravona , Receptores de Hidrocarburo de Aril , Transducción de Señal , Animales , Humanos , Ratones , Antioxidantes/farmacología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Línea Celular Tumoral , Edaravona/farmacología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Factor 2 Relacionado con NF-E2/metabolismo , Receptores de Hidrocarburo de Aril/efectos de los fármacos , Receptores de Hidrocarburo de Aril/metabolismo , Transducción de Señal/efectos de los fármacos , Pez Cebra/metabolismo
15.
Mol Neurodegener ; 19(1): 22, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454456

RESUMEN

BACKGROUND: Mutations in the ß-glucocerebrosidase (GBA1) gene do cause the lysosomal storage Gaucher disease (GD) and are among the most frequent genetic risk factors for Parkinson's disease (PD). So far, studies on both neuronopathic GD and PD primarily focused on neuronal manifestations, besides the evaluation of microglial and astrocyte implication. White matter alterations were described in the central nervous system of paediatric type 1 GD patients and were suggested to sustain or even play a role in the PD process, although the contribution of oligodendrocytes has been so far scarcely investigated. METHODS: We exploited a system to study the induction of central myelination in vitro, consisting of Oli-neu cells treated with dibutyryl-cAMP, in order to evaluate the expression levels and function of ß-glucocerebrosidase during oligodendrocyte differentiation. Conduritol-B-epoxide, a ß-glucocerebrosidase irreversible inhibitor was used to dissect the impact of ß-glucocerebrosidase inactivation in the process of myelination, lysosomal degradation and α-synuclein accumulation in vitro. Moreover, to study the role of ß-glucocerebrosidase in the white matter in vivo, we developed a novel mouse transgenic line in which ß-glucocerebrosidase function is abolished in myelinating glia, by crossing the Cnp1-cre mouse line with a line bearing loxP sequences flanking Gba1 exons 9-11, encoding for ß-glucocerebrosidase catalytic domain. Immunofluorescence, western blot and lipidomic analyses were performed in brain samples from wild-type and knockout animals in order to assess the impact of genetic inactivation of ß-glucocerebrosidase on myelination and on the onset of early neurodegenerative hallmarks, together with differentiation analysis in primary oligodendrocyte cultures. RESULTS: Here we show that ß-glucocerebrosidase inactivation in oligodendrocytes induces lysosomal dysfunction and inhibits myelination in vitro. Moreover, oligodendrocyte-specific ß-glucocerebrosidase loss-of-function was sufficient to induce in vivo demyelination and early neurodegenerative hallmarks, including axonal degeneration, α-synuclein accumulation and astrogliosis, together with brain lipid dyshomeostasis and functional impairment. CONCLUSIONS: Our study sheds light on the contribution of oligodendrocytes in GBA1-related diseases and supports the need for better characterizing oligodendrocytes as actors playing a role in neurodegenerative diseases, also pointing at them as potential novel targets to set a brake to disease progression.


Asunto(s)
Enfermedad de Gaucher , Enfermedad de Parkinson , Animales , Ratones , alfa-Sinucleína/metabolismo , Animales Modificados Genéticamente/metabolismo , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/metabolismo , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Lípidos , Mutación , Enfermedad de Parkinson/metabolismo
16.
Dev Biol ; 366(2): 327-40, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22546689

RESUMEN

The creation of molecular tools able to unravel in vivo spatiotemporal activation of specific cell signaling events during cell migration, differentiation and morphogenesis is of great relevance to developmental cell biology. Here, we describe the generation, validation and applications of two transgenic reporter lines for Wnt/ß-catenin signaling, named TCFsiam, and show that they are reliable and sensitive Wnt biosensors for in vivo studies. We demonstrate that these lines sensitively detect Wnt/ß-catenin pathway activity in several cellular contexts, from sensory organs to cardiac valve patterning. We provide evidence that Wnt/ß-catenin activity is involved in the formation and maintenance of the zebrafish CNS blood vessel network, on which sox10 neural crest-derived cells migrate and proliferate. We finally show that these transgenic lines allow for screening of Wnt signaling modifying compounds, tissue regeneration assessment as well as evaluation of potential Wnt/ß-catenin genetic modulators.


Asunto(s)
Vía de Señalización Wnt , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Técnicas Biosensibles , Diferenciación Celular , Movimiento Celular , Neuronas/citología , Neuronas/fisiología , Pez Cebra/embriología
17.
J Biol Chem ; 287(27): 23246-54, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-22593577

RESUMEN

Secreted Wnt proteins constitute one of the largest families of intercellular signaling molecules in vertebrates with essential roles in embryonic development and adult tissue homeostasis. The functional redundancy of Wnt genes and the many forms of cellular responses they elicit, including some utilizing the transcriptional co-activator ß-catenin, has limited the ability of classical genetic strategies to uncover their roles in vivo. We had previously identified a chemical compound class termed Inhibitor of Wnt Production (or IWP) that targets Porcupine (Porcn), an acyltransferase catalyzing the addition of fatty acid adducts onto Wnt proteins. Here we demonstrate that diverse chemical structures are able to inhibit Porcn by targeting its putative active site. When deployed in concert with small molecules that modulate the activity of Tankyrase enzymes and glycogen synthase kinase 3 ß (GSK3ß), additional transducers of Wnt/ß-catenin signaling, the IWP compounds reveal an essential role for Wnt protein fatty acylation in eliciting ß-catenin-dependent and -independent forms of Wnt signaling during zebrafish development. This collection of small molecules facilitates rapid dissection of Wnt gene function in vivo by limiting the influence of redundant Wnt gene functions on phenotypic outcomes and enables temporal manipulation of Wnt-mediated signaling in vertebrates.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Regeneración Tisular Dirigida/métodos , Proteínas de la Membrana/antagonistas & inhibidores , Andamios del Tejido , Vía de Señalización Wnt/fisiología , Aciltransferasas , Animales , Animales Modificados Genéticamente , Antineoplásicos/farmacología , Células COS , Membrana Celular/enzimología , Chlorocebus aethiops , Diseño de Fármacos , Células HEK293 , Células HeLa , Humanos , Riñón/citología , Riñón/embriología , Riñón/enzimología , Proteínas de la Membrana/metabolismo , Técnicas de Cultivo de Órganos , Vía de Señalización Wnt/efectos de los fármacos , Pez Cebra , beta Catenina/metabolismo
18.
Mol Genet Genomics ; 288(5-6): 231-42, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23674148

RESUMEN

In the last years, we have seen the emergence of different tools that have changed the face of biology from a simple modeling level to a more systematic science. The transparent zebrafish embryo is one of the living models in which, after germline transformation with reporter protein-coding genes, specific fluorescent cell populations can be followed at single-cell resolution. The genetically modified embryos, larvae and adults, resulting from the transformation, are individuals in which time lapse analysis, digital imaging quantification, FACS sorting and next-generation sequencing can be performed in specific times and tissues. These multifaceted genetic and cellular approaches have permitted to dissect molecular interactions at the subcellular, intercellular, tissue and whole-animal level, thus allowing integration of cellular and developmental genetics with molecular imaging in the resulting frame of modern biology. In this review, we describe a new step in the zebrafish road to system biology, based on the use of transgenic biosensor animals expressing fluorescent proteins under the control of signaling pathway-responsive cis-elements. In particular, we provide here the rationale and details of this powerful tool, trying to focus on its huge potentialities in basic and applied research, while also discussing limits and potential technological evolutions of this approach.


Asunto(s)
Animales Modificados Genéticamente , Genes Reporteros , Transducción de Señal , Pez Cebra/genética , Pez Cebra/metabolismo , Animales , Embrión no Mamífero , Regiones Promotoras Genéticas , Pez Cebra/embriología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
19.
Proc Natl Acad Sci U S A ; 107(2): 775-80, 2010 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-20080751

RESUMEN

Genome-wide association studies identified noncoding SNPs associated with type 2 diabetes and obesity in linkage disequilibrium (LD) blocks encompassing HHEX-IDE and introns of CDKAL1 and FTO [Sladek R, et al. (2007) Nature 445:881-885; Steinthorsdottir V, et al. (2007) Nat. Genet 39:770-775; Frayling TM, et al. (2007) Science 316:889-894]. We show that these LD blocks contain highly conserved noncoding elements and overlap with the genomic regulatory blocks of the transcription factor genes HHEX, SOX4, and IRX3. We report that human highly conserved noncoding elements in LD with the risk SNPs drive expression in endoderm or pancreas in transgenic mice and zebrafish. Both HHEX and SOX4 have recently been implicated in pancreas development and the regulation of insulin secretion, but IRX3 had no prior association with pancreatic function or development. Knockdown of its orthologue in zebrafish, irx3a, increased the number of pancreatic ghrelin-producing epsilon cells and decreased the number of insulin-producing beta-cells and glucagon-producing alpha-cells, thereby suggesting a direct link of pancreatic IRX3 function to both obesity and type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Obesidad/genética , Polimorfismo de Nucleótido Simple , Factores de Transcripción SOXC/genética , Factores de Transcripción/genética , Animales , Secuencia Conservada , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/epidemiología , Genes Reporteros , Estudio de Asociación del Genoma Completo , Homeostasis , Humanos , Insulina/metabolismo , Secreción de Insulina , Ratones , Ratones Transgénicos/genética , Páncreas/fisiología , Factores de Riesgo , Pez Cebra/genética
20.
Sci Rep ; 13(1): 10289, 2023 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-37357221

RESUMEN

Multiple complex intracellular cascades contributing to Hunter syndrome (mucopolysaccharidosis type II) pathogenesis have been recognized and documented in the past years. However, the hierarchy of early cellular abnormalities leading to irreversible neuronal damage is far from being completely understood. To tackle this issue, we have generated two novel iduronate-2-sulfatase (IDS) loss of function human neuronal cell lines by means of genome editing. We show that both neuronal cell lines exhibit no enzymatic activity and increased GAG storage despite a completely different genotype. At a cellular level, they display reduced differentiation, significantly decreased LAMP1 and RAB7 protein levels, impaired lysosomal acidification and increased lipid storage. Moreover, one of the two clones is characterized by a marked decrease of the autophagic marker p62, while none of the two mutants exhibit marked oxidative stress and mitochondrial morphological changes. Based on our preliminary findings, we hypothesize that neuronal differentiation might be significantly affected by IDS functional impairment.


Asunto(s)
Iduronato Sulfatasa , Mucopolisacaridosis II , Humanos , Ácido Idurónico , Sistemas CRISPR-Cas , Iduronato Sulfatasa/genética , Iduronato Sulfatasa/metabolismo , Mucopolisacaridosis II/genética , Línea Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA