Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 256
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Artif Organs ; 47(1): 47-61, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36029128

RESUMEN

BACKGROUND: Several factors like three-dimensional microstructure, growth factors, cytokines, cell-cell communication, and coculture with functional cells can affect the stem cells behavior and differentiation. The purpose of this study was to investigate the potential of decellularized placental sponge as adipose-derived mesenchymal stem cells (AD-MSCs) and macrophage coculture systems, and guiding the osteogenic differentiation of stem cells. METHODS: The decellularized placental sponge (DPS) was fabricated, and its mechanical characteristics were evaluated using degradation assay, swelling rate, and pore size determination. Its structure was also investigated using hematoxylin and eosin staining and scanning electron microscopy. Mouse peritoneal macrophages and AD-MSCs were isolated and characterized. The differentiation potential of AD-MSCs co-cultured with macrophages was evaluated by RT-qPCR of osteogenic genes on the surface of DPS. The in vivo biocompatibility of DPS was determined by subcutaneous implantation of scaffold and histological evaluations of the implanted site. RESULTS: The DPS had 67% porosity with an average pore size of 238 µm. The in vitro degradation assay showed around 25% weight loss during 30 days in PBS. The swelling rate was around 50% during 72 h. The coculture of AD-MSCs/macrophages on the DPS showed a significant upregulation of four differentiation osteogenic lineage genes in AD-MSCs on days 14 and 21 and a significantly higher mineralization rate than the groups without DPS. Subcutaneous implantation of DPS showed in vivo biocompatibility of scaffold during 28 days follow-up. CONCLUSIONS: Our findings suggest the decellularized placental sponge as an excellent bone substitute providing a naturally derived matrix substrate with biostructure close to the natural bone that guided differentiation of stem cells toward bone cells and a promising coculture substrate for crosstalk of macrophage and mesenchymal stem cells in vitro.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Embarazo , Femenino , Ratones , Animales , Osteogénesis/fisiología , Técnicas de Cocultivo , Andamios del Tejido/química , Placenta , Diferenciación Celular/fisiología , Macrófagos/metabolismo , Células Cultivadas
2.
Med Res Rev ; 42(5): 1978-2001, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35707911

RESUMEN

The complexity of the tumor microenvironment (TME) together with the development of the metastatic process are the main reasons for the failure of conventional anticancer treatment. In recent years, there is an increasing need to advance toward advanced in vitro models of cancer mimicking TME and simulating metastasis to understand the associated mechanisms that are still unknown, and to be able to develop personalized therapy. In this review, the commonly used alternatives and latest advances in biofabrication of tumor-on-chips, which allow the generation of the most sophisticated and optimized models for recapitulating the tumor process, are presented. In addition, the advances that have allowed these new models in the area of metastasis, cancer stem cells, and angiogenesis are summarized, as well as the recent integration of multiorgan-on-a-chip systems to recapitulate natural metastasis and pharmacological screening against it. We also analyze, for the first time in the literature, the normative and regulatory framework in which these models could potentially be found, as well as the requirements and processes that must be fulfilled to be commercially implemented as in vitro study model. Moreover, we are focused on the possible regulatory pathways for their clinical application in precision medicine and decision making through the generation of personalized models with patient samples. In conclusion, this review highlights the synergistic combination of three-dimensional bioprinting systems with the novel tumor/metastasis/multiorgan-on-a-chip systems to generate models for both basic research and clinical applications to have devices useful for personalized oncology.


Asunto(s)
Bioimpresión , Neoplasias , Bioimpresión/métodos , Humanos , Dispositivos Laboratorio en un Chip , Neoplasias/tratamiento farmacológico , Medicina de Precisión/métodos , Microambiente Tumoral
3.
Biomacromolecules ; 23(3): 1083-1100, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35050596

RESUMEN

α-Amino acid based polyester amides (PEAs) are promising candidates for additive manufacturing (AM), as they unite the flexibility and degradability of polyesters and good thermomechanical properties of polyamides in one structure. Introducing α-amino acids in the PEA structure brings additional advantages such as (i) good cytocompatibility and biodegradability, (ii) providing strong amide bonds, enhancing the hydrogen-bonding network, (iii) the introduction of pendant reactive functional groups, and (iv) providing good cell-polymer interactions. However, the application of α-amino acid based PEAs for AM via fused deposition modeling (FDM), an important manufacturing technique with unique processing characteristics and requirements, is still lacking. With the aim to exploit the combination of these advantages in the creation, design, and function of additively manufactured scaffolds using FDM, we report the structure-function relationship of a series of α-amino acid based PEAs. The PEAs with three different molecular weights were synthesized via the active solution polycondensation, and their performance for AM applications was studied in comparison with a commercial biomedical grade copolymer of l-lactide and glycolide (PLGA). The PEAs, in addition to good thermal stability, showed semicrystalline behavior with proper mechanical properties, which were different depending on their molecular weight and crystallinity. They showed more ductility due to their lower glass transition temperature (Tg; 18-20 °C) compared with PLGA (57 °C). The rheology studies revealed that the end-capping of PEAs is of high importance for preventing cross-linking and further polymerization during the melt extrusion and for the steadiness and reproducibility of FDM. Furthermore, our data regarding the steady 3D printing performance, good polymer-cell interactions, and low cytotoxicity suggest that α-amino acid based PEAs can be introduced as favorable polymers for future AM applications in tissue engineering. In addition, their ability for formation of bonelike apatite in the simulated body fluid (SBF) indicates their potential for bone tissue engineering applications.


Asunto(s)
Amidas , Ésteres , Amidas/química , Aminoácidos/química , Poliésteres/química , Polímeros/química , Reproducibilidad de los Resultados
4.
Chem Rev ; 120(19): 10547-10607, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32407108

RESUMEN

Bioprinting techniques have been flourishing in the field of biofabrication with pronounced and exponential developments in the past years. Novel biomaterial inks used for the formation of bioinks have been developed, allowing the manufacturing of in vitro models and implants tested preclinically with a certain degree of success. Furthermore, incredible advances in cell biology, namely, in pluripotent stem cells, have also contributed to the latest milestones where more relevant tissues or organ-like constructs with a certain degree of functionality can already be obtained. These incredible strides have been possible with a multitude of multidisciplinary teams around the world, working to make bioprinted tissues and organs more relevant and functional. Yet, there is still a long way to go until these biofabricated constructs will be able to reach the clinics. In this review, we summarize the main bioprinting activities linking them to tissue and organ development and physiology. Most bioprinting approaches focus on mimicking fully matured tissues. Future bioprinting strategies might pursue earlier developmental stages of tissues and organs. The continuous convergence of the experts in the fields of material sciences, cell biology, engineering, and many other disciplines will gradually allow us to overcome the barriers identified on the demanding path toward manufacturing and adoption of tissue and organ replacements.


Asunto(s)
Bioimpresión , Modelos Biológicos , Impresión Tridimensional , Ingeniería de Tejidos , Humanos
5.
Small ; 17(14): e2006009, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33705602

RESUMEN

For decades, several attempts have been made to obtain a mimetic model for the study of metastasis, the reason of most of deaths caused by cancer, in order to solve the unknown phenomena surrounding this disease. To better understand this cellular dissemination process, more realistic models are needed that are capable of faithfully recreating the entire and essential tumor microenvironment (TME). Thus, new tools known as tumor-on-a-chip and metastasis-on-a-chip have been recently proposed. These tools incorporate microfluidic systems and small culture chambers where TME can be faithfully modeled thanks to 3D bioprinting. In this work, a literature review has been developed about the different phases of metastasis, the remaining unknowns and the use of new models to study this disease. The aim is to provide a global vision of the current panorama and the great potential that these systems have for in vitro translational research on the molecular basis of the pathology. In addition, these models will allow progress toward a personalized medicine, generating chips from patient samples that mimic the original tumor and the metastatic process to perform a precise pharmacological screening by establishing the most appropriate treatment protocol.


Asunto(s)
Bioimpresión , Neoplasias , Humanos , Dispositivos Laboratorio en un Chip , Microfluídica , Microambiente Tumoral
6.
Stem Cells ; 38(8): 948-959, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32379914

RESUMEN

Stanniocalcin-1 (STC1) secreted by mesenchymal stromal cells (MSCs) has anti-inflammatory functions, reduces apoptosis, and aids in angiogenesis, both in vitro and in vivo. However, little is known about the molecular mechanisms of its regulation. Here, we show that STC1 secretion is increased only under specific cell-stress conditions. We find that this is due to a change in actin stress fibers and actin-myosin tension. Abolishment of stress fibers by blebbistatin and knockdown of the focal adhesion protein zyxin leads to an increase in STC1 secretion. To also study this connection in 3D, where few focal adhesions and actin stress fibers are present, STC1 expression was analyzed in 3D alginate hydrogels and 3D electrospun scaffolds. Indeed, STC1 secretion was increased in these low cellular tension 3D environments. Together, our data show that STC1 does not directly respond to cell stress, but that it is regulated through mechanotransduction. This research takes a step forward in the fundamental understanding of STC1 regulation and can have implications for cell-based regenerative medicine, where cell survival, anti-inflammatory factors, and angiogenesis are critical.


Asunto(s)
Actinas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Miosinas/metabolismo , Zixina/metabolismo , Humanos
7.
Int J Mol Sci ; 22(8)2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918892

RESUMEN

Various hydrogel systems have been developed as biomaterial inks for bioprinting, including natural and synthetic polymers. However, the available biomaterial inks, which allow printability, cell viability, and user-defined customization, remains limited. Incorporation of biological extracellular matrix materials into tunable synthetic polymers can merge the benefits of both systems towards versatile materials for biofabrication. The aim of this study was to develop novel, cell compatible dual-component biomaterial inks and bioinks based on poly(vinyl alcohol) (PVA) and solubilized decellularized cartilage matrix (SDCM) hydrogels that can be utilized for cartilage bioprinting. In a first approach, PVA was modified with amine groups (PVA-A), and mixed with SDCM. The printability of the PVA-A/SDCM formulations cross-linked by genipin was evaluated. On the second approach, the PVA was functionalized with cis-5-norbornene-endo-2,3-dicarboxylic anhydride (PVA-Nb) to allow an ultrafast light-curing thiol-ene cross-linking. Comprehensive experiments were conducted to evaluate the influence of the SDCM ratio in mechanical properties, water uptake, swelling, cell viability, and printability of the PVA-based formulations. The studies performed with the PVA-A/SDCM formulations cross-linked by genipin showed printability, but poor shape retention due to slow cross-linking kinetics. On the other hand, the PVA-Nb/SDCM showed good printability. The results showed that incorporation of SDCM into PVA-Nb reduces the compression modulus, enhance cell viability, and bioprintability and modulate the swelling ratio of the resulted hydrogels. Results indicated that PVA-Nb hydrogels containing SDCM could be considered as versatile bioinks for cartilage bioprinting.


Asunto(s)
Materiales Biocompatibles , Bioimpresión , Alcohol Polivinílico , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido , Animales , Bioimpresión/métodos , Matriz Ósea , Cartílago/química , Bovinos , Técnicas de Cultivo de Célula , Técnicas de Química Sintética , Reactivos de Enlaces Cruzados , Matriz Extracelular , Hidrogeles/química , Resonancia Magnética Nuclear Biomolecular , Alcohol Polivinílico/síntesis química , Alcohol Polivinílico/química
8.
Small ; 16(34): e2002258, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32656904

RESUMEN

Despite numerous advances in the field of tissue engineering and regenerative medicine, monitoring the formation of tissue regeneration and its metabolic variations during culture is still a challenge and mostly limited to bulk volumetric assays. Here, a simple method of adding capsules-based optical sensors in cell-seeded 3D scaffolds is presented and the potential of these sensors to monitor the pH changes in space and time during cell growth is demonstrated. It is shown that the pH decreased over time in the 3D scaffolds, with a more prominent decrease at the edges of the scaffolds. Moreover, the pH change is higher in 3D scaffolds compared to monolayered 2D cell cultures. The results suggest that this system, composed by capsules-based optical sensors and 3D scaffolds with predefined geometry and pore architecture network, can be a suitable platform for monitoring pH variations during 3D cell growth and tissue formation. This is particularly relevant for the investigation of 3D cellular microenvironment alterations occurring both during physiological processes, such as tissue regeneration, and pathological processes, such as cancer evolution.


Asunto(s)
Células Madre Mesenquimatosas , Diferenciación Celular , Concentración de Iones de Hidrógeno , Ingeniería de Tejidos , Andamios del Tejido
9.
Biomacromolecules ; 21(6): 2208-2217, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32243138

RESUMEN

Supramolecular and dynamic biomaterials hold promise to recapitulate the time-dependent properties and stimuli-responsiveness of the native extracellular matrix (ECM). Host-guest chemistry is one of the most widely studied supramolecular bonds, yet the binding characteristics of host-guest complexes (ß-CD/adamantane) in relevant biomaterials have mostly focused on singular host-guest interactions or nondiscrete multivalent pendent polymers. The stepwise synergistic effect of multivalent host-guest interactions for the formation of dynamic biomaterials remains relatively unreported. In this work, we study how a series of multivalent adamantane (guest) cross-linkers affect the overall binding affinity and ability to form supramolecular networks with alginate-CD (Alg-CD). These binding constants of the multivalent cross-linkers were determined via NMR titrations and showed increases in binding constants occurring with multivalent constructs. The higher multivalent cross-linkers enabled hydrogel formation; furthermore, an increase in binding and gelation was observed with the inclusion of a phenyl spacer to the cross-linker. A preliminary screen shows that only cross-linking Alg-CD with an 8-arm-multivalent guest results in robust gel formation. These cytocompatible hydrogels highlight the importance of multivalent design for dynamically cross-linked hydrogels. These materials hold promise for development toward cell- and small molecule-delivery platforms and allow discrete and fine-tuning of network properties.


Asunto(s)
Materiales Biocompatibles , Hidrogeles , Alginatos , Polímeros
10.
Int J Mol Sci ; 21(10)2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32455722

RESUMEN

Endocrine disruptors (EDs) are chemicals that contribute to health problems by interfering with the physiological production and target effects of hormones, with proven impacts on a number of endocrine systems including the thyroid gland. Exposure to EDs has also been associated with impairment of the reproductive system and incidence in occurrence of obesity, type 2 diabetes, and cardiovascular diseases during ageing. SCREENED aims at developing in vitro assays based on rodent and human thyroid cells organized in three different three-dimensional (3D) constructs. Due to different levels of anatomical complexity, each of these constructs has the potential to increasingly mimic the structure and function of the native thyroid gland, ultimately achieving relevant features of its 3D organization including: 1) a 3D organoid based on stem cell-derived thyrocytes, 2) a 3D organoid based on a decellularized thyroid lobe stromal matrix repopulated with stem cell-derived thyrocytes, and 3) a bioprinted organoid based on stem cell-derived thyrocytes able to mimic the spatial and geometrical features of a native thyroid gland. These 3D constructs will be hosted in a modular microbioreactor equipped with innovative sensing technology and enabling precise control of cell culture conditions. New superparamagnetic biocompatible and biomimetic particles will be used to produce "magnetic cells" to support precise spatiotemporal homing of the cells in the 3D decellularized and bioprinted constructs. Finally, these 3D constructs will be used to screen the effect of EDs on the thyroid function in a unique biological sex-specific manner. Their performance will be assessed individually, in comparison with each other, and against in vivo studies. The resulting 3D assays are expected to yield responses to low doses of different EDs, with sensitivity and specificity higher than that of classical 2D in vitro assays and animal models. Supporting the "Adverse Outcome Pathway" concept, proteogenomic analysis and biological computational modelling of the underlying mode of action of the tested EDs will be pursued to gain a mechanistic understanding of the chain of events from exposure to adverse toxic effects on thyroid function. For future uptake, SCREENED will engage discussion with relevant stakeholder groups, including regulatory bodies and industry, to ensure that the assays will fit with purposes of ED safety assessment. In this project review, we will briefly discuss the current state of the art in cellular assays of EDs and how our project aims at further advancing the field of cellular assays for EDs interfering with the thyroid gland.


Asunto(s)
Disruptores Endocrinos/toxicidad , Glándula Tiroides/efectos de los fármacos , Pruebas de Toxicidad/métodos , Técnicas de Cultivo/métodos , Humanos , Organoides/citología , Organoides/efectos de los fármacos , Organoides/metabolismo , Factores Sexuales , Glándula Tiroides/citología , Glándula Tiroides/metabolismo , Pruebas de Toxicidad/normas
11.
Molecules ; 25(4)2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32098281

RESUMEN

Glycosaminoglycans (GAG) are long, linear polysaccharides that display a wide range of relevant biological roles. Particularly, in the extracellular matrix (ECM) GAG specifically interact with other biological molecules, such as growth factors, protecting them from proteolysis or inhibiting factors. Additionally, ECM GAG are partially responsible for the mechanical stability of tissues due to their capacity to retain high amounts of water, enabling hydration of the ECM and rendering it resistant to compressive forces. In this review, the use of GAG for developing hydrogel networks with improved biological activity and/or mechanical properties is discussed. Greater focus is given to strategies involving the production of hydrogels that are composed of GAG alone or in combination with other materials. Additionally, approaches used to introduce GAG-inspired features in biomaterials of different sources will also be presented.


Asunto(s)
Glicosaminoglicanos/química , Hidrogeles/química , Polisacáridos/química , Matriz Extracelular/química , Matriz Extracelular/efectos de los fármacos , Glicosaminoglicanos/uso terapéutico , Humanos , Hidrogeles/síntesis química , Hidrogeles/uso terapéutico , Péptidos y Proteínas de Señalización Intercelular/química , Polisacáridos/uso terapéutico , Proteolisis/efectos de los fármacos , Agua/química
12.
J Mater Sci Mater Med ; 30(6): 61, 2019 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-31127377

RESUMEN

In vivo experiments are accompanied by ethical issues, including sacrificing a large number of animals as well as large costs. A new in vivo 3D screening system was developed to reduce the number of required animals without compromising the results. The present pilot study examined a multiwell array system in combination with three different collagen-based biomaterials (A, B and C) using subcutaneous implantation for 10 days and histological and histomorphometrical evaluations. The tissue reaction towards the device itself was dominated by mononuclear cells. However, three independent biomaterial-specific tissue reactions were observed in three chambers. The results showed a mononuclear cell-based tissue reaction in one chamber (A) and foreign body reaction by multinucleated giant cells in the other two chambers (B and C). Statistical analysis showed a significantly higher number of multinucleated giant cells in cases B and C than in case A (A vs. B; ***P < 0.001), (A vs. C; P < 0.01). These outcomes were comparable to previously published observations with conventional biomaterial implantation. The present data lead to the conclusion that this 3D screening system could be an alternative tool to enhance the effectiveness of in vivo experiments, thus offering a more economic strategy to screen biomaterial-related cellular reactions, while saving animals, without influencing the final outcome.


Asunto(s)
Materiales Biocompatibles/química , Técnicas de Cultivo de Célula/instrumentación , Colágeno/química , Reacción a Cuerpo Extraño , Animales , Células Gigantes/citología , Sistema Inmunológico , Inflamación , Ratones , Proyectos Piloto , Piel/metabolismo , Porcinos , Ingeniería de Tejidos/métodos , Investigación Biomédica Traslacional
13.
Biomacromolecules ; 19(8): 3390-3400, 2018 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-29939754

RESUMEN

Bioprinting is a powerful technique that allows precise and controlled 3D deposition of biomaterials in a predesigned, customizable, and reproducible manner. Cell-laden hydrogel ("bioink") bioprinting is especially advantageous for tissue engineering applications as multiple cells and biomaterial compositions can be selectively dispensed to create spatially well-defined architectures. Despite this promise, few hydrogel systems are easily available and suitable as bioinks, with even fewer systems allowing for molecular design of mechanical and biological properties. In this study, we report the development of a norbornene functionalized alginate system as a cell-laden bioink for extrusion-based bioprinting, with a rapid UV-induced thiol-ene cross-linking mechanism that avoids acrylate kinetic chain formation. The mechanical and swelling properties of the hydrogels are tunable by varying the concentration, length, and structure of dithiol PEG cross-linkers and can be further modified by postprinting secondary cross-linking with divalent ions such as calcium. The low concentrations of alginate needed (<2 wt %), coupled with their rapid in situ gelation, allow both the maintenance of high cell viability and the ability to fabricate large multilayer or multibioink constructs with identical bioprinting conditions. The modularity of this bioink platform design enables not only the rational design of materials properties but also the gel's biofunctionality (as shown via RGD attachment) for the expected tissue-engineering application. This modularity enables the creation of multizonal and multicellular constructs utilizing a chemically similar bioink platform. Such tailorable bioink platforms will enable increased complexity in 3D bioprinted constructs.


Asunto(s)
Alginatos/química , Bioimpresión/métodos , Hidrogeles/química , Tinta , Animales , Calcio/química , Línea Celular , Reactivos de Enlaces Cruzados/química , Fibroblastos/efectos de los fármacos , Hidrogeles/efectos adversos , Ratones , Norbornanos/química , Compuestos de Azufre/química
14.
J Mater Sci Mater Med ; 29(5): 63, 2018 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-29736776

RESUMEN

The external auditory canal (EAC) is an osseocartilaginous structure extending from the auricle to the eardrum, which can be affected by congenital, inflammatory, and neoplastic diseases, thus reconstructive materials are needed. Current biomaterial-based approaches for the surgical reconstruction of EAC posterior wall still suffer from resorption (biological) and extrusion (synthetic). In this study, 3D fiber deposited scaffolds based on poly(ethylene oxide terephthalate)/poly(butylene terephthalate) were designed and fabricated to replace the EAC wall. Fiber diameter and scaffold porosity were optimized, leading to 200 ± 33 µm and 55% ± 5%, respectively. The mechanical properties were evaluated, resulting in a Young's modulus of 25.1 ± 7.0 MPa. Finally, the EAC scaffolds were tested in vitro with osteo-differentiated human mesenchymal stromal cells (hMSCs) with different seeding methods to produce homogeneously colonized replacements of interest for otologic surgery. This study demonstrated the fabrication feasibility of EAC wall scaffolds aimed to match several important requirements for biomaterial application to the ear under the Tissue Engineering paradigm, including shape, porosity, surface area, mechanical properties and favorable in vitro interaction with osteoinduced hMSCs. This study demonstrated the fabrication feasibility of outer ear canal wall scaffolds via additive manufacturing. Aimed to match several important requirements for biomaterial application to ear replacements under the Tissue Engineering paradigm, including shape, porosity and pore size, surface area, mechanical properties and favorable in vitro interaction with osteo-differentiated mesenchymal stromal cells.


Asunto(s)
Materiales Biocompatibles/química , Conducto Auditivo Externo/citología , Nanofibras/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Materiales Biocompatibles/farmacología , Células Sanguíneas/citología , Células Sanguíneas/efectos de los fármacos , Células Sanguíneas/fisiología , Técnicas de Cultivo de Célula , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Regeneración Tisular Dirigida/instrumentación , Regeneración Tisular Dirigida/métodos , Humanos , Ensayo de Materiales , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/fisiología , Modelos Anatómicos , Polímeros/síntesis química , Polímeros/química , Polímeros/farmacología , Impresión Tridimensional , Ingeniería de Tejidos/instrumentación
15.
Macromol Rapid Commun ; 38(16)2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28671747

RESUMEN

The functionalization of biomaterials substrates used for cell culture is gearing towards an increasing control over cell activity. Although a number of biomaterials have been successfully modified by different strategies to display tailored physical and chemical surface properties, it is still challenging to step from 2D substrates to 3D scaffolds with instructive surface properties for cell culture and tissue regeneration. In this study, additive manufacturing and thermally induced phase separation are combined to create 3D scaffolds with tunable surface morphology from polymer gels. Surface features vary depending on the gel concentration, the exchanging temperature, and the nonsolvent used. When preosteoblasts (MC-3T3 cells) are cultured on these scaffolds, a significant increase in alkaline phosphatase activity is measured for submicron surface topography, suggesting a potential role on early cell differentiation.


Asunto(s)
Ingeniería de Tejidos/instrumentación , Andamios del Tejido/química , Animales , Materiales Biocompatibles/química , Polímeros/química , Propiedades de Superficie
16.
J Mater Sci Mater Med ; 28(12): 195, 2017 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-29151130

RESUMEN

Islets of Langerhans need to maintain their round morphology and to be fast revascularized after transplantation to preserve functional insulin secretion in response to glucose stimulation. For this purpose, a non-cell-adhesive environment is preferable for their embedding. Conversely, nutrient and oxygen supply to islets is guaranteed by capillary ingrowth within the construct and this can only be achieved in a matrix that provides adhesion cues for cells. In this study, two different approaches are explored, which are both based on a layered architecture, in order to combine these two opposite requirements. A non-adhesive islet encapsulation layer is based on polyethyleneglycole diacrylate (PEGDA). This first layer is combined with a second hydrogel based on thiolated-gelatin, thiolated-heparin and thiolated-hyaluronic acid providing cues for endothelial cell adhesion and acting as a growth factor releasing matrix. In an alternative approach, a conformal PEGDA coating is covalently applied on the surface of the islets. The coated islets are subsequently embedded in the previously mentioned hydrogel containing thiolated glycosaminoglycans. The suitability of this approach as a matrix for controlled growth factor release has been demonstrated by studying the controlled release of VEGF and bFGF for 14 days. Preliminary tube formation has been quantified on the growth factor loaded hydrogels. This approach should facilitate blood vessel ingrowth towards the embedded islets and maintain islet round morphology and functionality upon implantation.


Asunto(s)
Hidrogel de Polietilenoglicol-Dimetacrilato , Islotes Pancreáticos/fisiología , Animales , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Factor de Crecimiento Epidérmico/metabolismo , Glucosa/farmacología , Humanos , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/efectos de los fármacos , Ratones , Neovascularización Fisiológica , Andamios del Tejido
17.
Int J Mol Sci ; 17(9)2016 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-27626415

RESUMEN

In vitro research in the field of type I diabetes is frequently limited by the availability of a functional model for islets of Langerhans. This method shows that by the addition of theophylline to the glucose buffers, mouse insulinoma MIN6 and rat insulinoma INS1E pseudo-islets can serve as a model for islets of Langerhans for in vitro research. The effect of theophylline is dose- and cell line-dependent, resulting in a minimal stimulation index of five followed by a rapid return to baseline insulin secretion by reducing glucose concentrations after a first high glucose stimulation. This protocol solves issues concerning in vitro research for type I diabetes as donors and the availability of primary islets of Langerhans are limited. To avoid the limitations of using human donor material, cell lines represent a valid alternative. Many different ß cell lines have been reported, but the lack of reproducible responsiveness to glucose stimulation remains a challenge.


Asunto(s)
Diabetes Mellitus Tipo 1/patología , Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Teofilina/farmacología , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Humanos , Técnicas In Vitro , Secreción de Insulina , Islotes Pancreáticos/citología , Ratones , Modelos Biológicos , Ratas
18.
Birth Defects Res C Embryo Today ; 105(1): 34-52, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25777257

RESUMEN

The osteochondral (OC) interface is not only the interface between two tissues, but also the evolution of hard and stiff bone tissue to the softer and viscoelastic articular cartilage covering the joint surface. To generate a smooth transition between two tissues with such differences in many of their characteristics, several gradients are recognizable when moving from the bone side to the joint surface. It is, therefore, necessary to implement such gradients in the design of scaffolds to regenerate the OC interface, so to mimic the anatomical, biological, and physicochemical properties of bone and cartilage as closely as possible. In the past years, several scaffolds were developed for OC regeneration: biphasic, triphasic, and multilayered scaffolds were used to mimic the compartmental nature of this tissue. The structure of these scaffolds presented gradients in mechanical, physicochemical, or biological properties. The use of gradient scaffolds with already differentiated or progenitor cells has been recently proposed. Some of these approaches have also been translated in clinical trials, yet without the expected satisfactory results, thus suggesting that further efforts in the development of constructs, which can lead to a functional regeneration of the OC interface by presenting gradients more closely resembling its native environment, will be needed in the near future. The aim of this review is to analyze the gradients present in the OC interface from the early stage of embryonic life up to the adult organism, and give an overview of the studies, which involved gradient scaffolds for its regeneration.


Asunto(s)
Huesos/fisiología , Cartílago/fisiología , Regeneración Tisular Dirigida/métodos , Articulaciones/fisiología , Morfogénesis/fisiología , Medicina Regenerativa/métodos , Andamios del Tejido/tendencias , Humanos , Medicina Regenerativa/tendencias
19.
Biotechnol Bioeng ; 112(7): 1457-71, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25678107

RESUMEN

Three-dimensional (3D) culture models are widely used in basic and translational research. In this study, to generate and culture multiple 3D cell spheroids, we exploited laser ablation and replica molding for the fabrication of polydimethylsiloxane (PDMS) multi-well chips, which were validated using articular chondrocytes (ACs). Multi-well ACs spheroids were comparable or superior to standard spheroids, as revealed by glycosaminoglycan and type-II collagen deposition. Moreover, the use of our multi-well chips significantly reduced the operation time for cell seeding and medium refresh. Exploiting a similar approach, we used clinical-grade fibrin to generate implantable multi-well constructs allowing for the precise distribution of multiple cell types. Multi-well fibrin constructs were seeded with ACs generating high cell density regions, as shown by histology and cell fluorescent staining. Multi-well constructs were compared to standard constructs with homogeneously distributed ACs. After 7 days in vitro, expression of SOX9, ACAN, COL2A1, and COMP was increased in both constructs, with multi-well constructs expressing significantly higher levels of chondrogenic genes than standard constructs. After 5 weeks in vivo, we found that despite a dramatic size reduction, the cell distribution pattern was maintained and glycosaminoglycan content per wet weight was significantly increased respect to pre-implantation samples. In conclusion, multi-well chips for the generation and culture of multiple cell spheroids can be fabricated by low-cost rapid prototyping techniques. Furthermore, these techniques can be used to generate implantable constructs with defined architecture and controlled cell distribution, allowing for in vitro and in vivo investigation of cell interactions in a 3D environment.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Condrocitos/fisiología , Recuento de Células , Células Cultivadas , Perfilación de la Expresión Génica , Humanos , Factores de Tiempo
20.
Nanomedicine ; 10(7): 1559-69, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24792217

RESUMEN

Interactions between Schwann cells (SCs) and scaffolds are important for tissue development during nerve regeneration, because SCs physiologically assist in directing the growth of regenerating axons. In this study, we prepared electrospun scaffolds combining poly (3-hydroxybutyrate) (PHB) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) functionalized with either collagen I, H-Gly-Arg-Gly-Asp-Ser-OH (GRGDS), H-Tyr-Ile-Gly-Ser-Arg-NH2 (YIGSR), or H-Arg-Asn-Ile-Ala-Glu-Ile-Ile-Lys-Asp-Ile-OH (p20) neuromimetic peptides to mimic naturally occurring ECM motifs for nerve regeneration. Cells cultured on fibrous mats presenting these biomolecules showed a significant increase in metabolic activity and proliferation while exhibiting unidirectional orientation along the orientation of the fibers. Real-time PCR showed cells cultured on peptide-modified scaffolds had a significantly higher neurotrophin expression compared to those on untreated nanofibers. Our study suggests that biofunctionalized aligned PHB/PHBV nanofibrous scaffolds may elicit essential cues for SCs activity and could serve as a potential scaffold for nerve regeneration. From the clinical editor: Nanotechnology-based functionalized scaffolds represent one of the most promising approaches in peripheral nerve recovery, as well as spinal cord recovery. In this study, bio-functionalized and aligned PHB/PHBV nanofibrous scaffolds were found to elicit essential cues for Schwann cell activity, therefore could serve as a potential scaffold for nerve regeneration.


Asunto(s)
Nanofibras , Péptidos/química , Polihidroxialcanoatos/química , Células de Schwann/citología , Andamios del Tejido , Ensayo de Inmunoadsorción Enzimática , Humanos , Microscopía Electrónica de Rastreo , Prohibitinas , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA