Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 18(4): e1010099, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35446841

RESUMEN

East Coast fever, a tick-borne cattle disease caused by the Theileria parva parasite, is among the biggest natural killers of cattle in East Africa, leading to over 1 million deaths annually. Here we report on the genetic analysis of a cohort of Bos indicus (Boran) cattle demonstrating heritable tolerance to infection with T. parva (h2 = 0.65, s.e. 0.57). Through a linkage analysis we identify a 6 Mb genomic region on bovine chromosome 15 that is significantly associated with survival outcome following T. parva exposure. Testing this locus in an independent cohort of animals replicates this association with survival following T. parva infection. A stop gained variant in a paralogue of the FAF1 gene in this region was found to be highly associated with survival across both related and unrelated animals, with only one of the 20 homozygote carriers (T/T) of this change succumbing to the disease in contrast to 44 out of 97 animals homozygote for the reference allele (C/C). Consequently, we present a genetic locus linked to tolerance of one of Africa's most important cattle diseases, raising the promise of marker-assisted selection for cattle that are less susceptible to infection by T. parva.


Asunto(s)
Enfermedades de los Bovinos , Theileria parva , Theileria , Theileriosis , Proteínas Adaptadoras Transductoras de Señales/genética , Alelos , Animales , Proteínas Reguladoras de la Apoptosis/genética , Bovinos , Enfermedades de los Bovinos/genética , Humanos , Theileria/genética , Theileria parva/genética , Theileriosis/genética , Theileriosis/parasitología
2.
PLoS Pathog ; 17(1): e1009224, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33481935

RESUMEN

Animal African trypanosomiasis (AAT) is a severe, wasting disease of domestic livestock and diverse wildlife species. The disease in cattle kills millions of animals each year and inflicts a major economic cost on agriculture in sub-Saharan Africa. Cattle AAT is caused predominantly by the protozoan parasites Trypanosoma congolense and T. vivax, but laboratory research on the pathogenic stages of these organisms is severely inhibited by difficulties in making even minor genetic modifications. As a result, many of the important basic questions about the biology of these parasites cannot be addressed. Here we demonstrate that an in vitro culture of the T. congolense genomic reference strain can be modified directly in the bloodstream form reliably and at high efficiency. We describe a parental single marker line that expresses T. congolense-optimized T7 RNA polymerase and Tet repressor and show that minichromosome loci can be used as sites for stable, regulatable transgene expression with low background in non-induced cells. Using these tools, we describe organism-specific constructs for inducible RNA-interference (RNAi) and demonstrate knockdown of multiple essential and non-essential genes. We also show that a minichromosomal site can be exploited to create a stable bloodstream-form line that robustly provides >40,000 independent stable clones per transfection-enabling the production of high-complexity libraries of genome-scale. Finally, we show that modified forms of T. congolense are still infectious, create stable high-bioluminescence lines that can be used in models of AAT, and follow the course of infections in mice by in vivo imaging. These experiments establish a base set of tools to change T. congolense from a technically challenging organism to a routine model for functional genetics and allow us to begin to address some of the fundamental questions about the biology of this important parasite.


Asunto(s)
Genética Microbiana , Proteínas Protozoarias/genética , Transgenes , Trypanosoma congolense/genética , Trypanosoma congolense/patogenicidad , Tripanosomiasis Africana/parasitología , Animales , Femenino , Genoma de Protozoos , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos BALB C , Tripanosomiasis Africana/genética
3.
PLoS Pathog ; 17(7): e1009734, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34310651

RESUMEN

Animal African Trypanosomiasis (AAT) is a debilitating livestock disease prevalent across sub-Saharan Africa, a main cause of which is the protozoan parasite Trypanosoma congolense. In comparison to the well-studied T. brucei, there is a major paucity of knowledge regarding the biology of T. congolense. Here, we use a combination of omics technologies and novel genetic tools to characterise core metabolism in T. congolense mammalian-infective bloodstream-form parasites, and test whether metabolic differences compared to T. brucei impact upon sensitivity to metabolic inhibition. Like the bloodstream stage of T. brucei, glycolysis plays a major part in T. congolense energy metabolism. However, the rate of glucose uptake is significantly lower in bloodstream stage T. congolense, with cells remaining viable when cultured in concentrations as low as 2 mM. Instead of pyruvate, the primary glycolytic endpoints are succinate, malate and acetate. Transcriptomics analysis showed higher levels of transcripts associated with the mitochondrial pyruvate dehydrogenase complex, acetate generation, and the glycosomal succinate shunt in T. congolense, compared to T. brucei. Stable-isotope labelling of glucose enabled the comparison of carbon usage between T. brucei and T. congolense, highlighting differences in nucleotide and saturated fatty acid metabolism. To validate the metabolic similarities and differences, both species were treated with metabolic inhibitors, confirming that electron transport chain activity is not essential in T. congolense. However, the parasite exhibits increased sensitivity to inhibition of mitochondrial pyruvate import, compared to T. brucei. Strikingly, T. congolense exhibited significant resistance to inhibitors of fatty acid synthesis, including a 780-fold higher EC50 for the lipase and fatty acid synthase inhibitor Orlistat, compared to T. brucei. These data highlight that bloodstream form T. congolense diverges from T. brucei in key areas of metabolism, with several features that are intermediate between bloodstream- and insect-stage T. brucei. These results have implications for drug development, mechanisms of drug resistance and host-pathogen interactions.


Asunto(s)
Trypanosoma brucei brucei/metabolismo , Trypanosoma congolense/metabolismo , Animales , Reguladores del Metabolismo de Lípidos/farmacología , Ratones , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma congolense/efectos de los fármacos , Tripanosomiasis Africana
4.
Mol Microbiol ; 116(2): 564-588, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33932053

RESUMEN

Trypanosoma congolense is a principal agent causing livestock trypanosomiasis in Africa, costing developing economies billions of dollars and undermining food security. Only the diamidine diminazene and the phenanthridine isometamidium are regularly used, and resistance is widespread but poorly understood. We induced stable diminazene resistance in T. congolense strain IL3000 in vitro. There was no cross-resistance with the phenanthridine drugs, melaminophenyl arsenicals, oxaborole trypanocides, or with diamidine trypanocides, except the close analogs DB829 and DB75. Fluorescence microscopy showed that accumulation of DB75 was inhibited by folate. Uptake of [3 H]-diminazene was slow with low affinity and partly but reciprocally inhibited by folate and by competing diamidines. Expression of T. congolense folate transporters in diminazene-resistant Trypanosoma brucei brucei significantly sensitized the cells to diminazene and DB829, but not to oxaborole AN7973. However, [3 H]-diminazene transport studies, whole-genome sequencing, and RNA-seq found no major changes in diminazene uptake, folate transporter sequence, or expression. Instead, all resistant clones displayed a moderate reduction in the mitochondrial membrane potential Ψm. We conclude that diminazene uptake in T. congolense proceed via multiple low affinity mechanisms including folate transporters; while resistance is associated with a reduction in Ψm it is unclear whether this is the primary cause of the resistance.


Asunto(s)
Diminazeno/farmacología , Potencial de la Membrana Mitocondrial/fisiología , Tripanocidas/farmacología , Trypanosoma congolense/efectos de los fármacos , Tripanosomiasis Africana/veterinaria , Tripanosomiasis Bovina/tratamiento farmacológico , Animales , Bovinos , Resistencia a Medicamentos/fisiología , Transportadores de Ácido Fólico/metabolismo , Fenantridinas/farmacología , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/parasitología , Tripanosomiasis Bovina/parasitología
5.
PLoS Pathog ; 16(11): e1008932, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33141865

RESUMEN

Livestock diseases caused by Trypanosoma congolense, T. vivax and T. brucei, collectively known as nagana, are responsible for billions of dollars in lost food production annually. There is an urgent need for novel therapeutics. Encouragingly, promising antitrypanosomal benzoxaboroles are under veterinary development. Here, we show that the most efficacious subclass of these compounds are prodrugs activated by trypanosome serine carboxypeptidases (CBPs). Drug-resistance to a development candidate, AN11736, emerged readily in T. brucei, due to partial deletion within the locus containing three tandem copies of the CBP genes. T. congolense parasites, which possess a larger array of related CBPs, also developed resistance to AN11736 through deletion within the locus. A genome-scale screen in T. brucei confirmed CBP loss-of-function as the primary mechanism of resistance and CRISPR-Cas9 editing proved that partial deletion within the locus was sufficient to confer resistance. CBP re-expression in either T. brucei or T. congolense AN11736-resistant lines restored drug-susceptibility. CBPs act by cleaving the benzoxaborole AN11736 to a carboxylic acid derivative, revealing a prodrug activation mechanism. Loss of CBP activity results in massive reduction in net uptake of AN11736, indicating that entry is facilitated by the concentration gradient created by prodrug metabolism.


Asunto(s)
Compuestos de Boro/metabolismo , Carboxipeptidasas/metabolismo , Tripanocidas/metabolismo , Trypanosoma brucei brucei/enzimología , Trypanosoma congolense/enzimología , Trypanosoma vivax/enzimología , Tripanosomiasis Africana/veterinaria , Valina/análogos & derivados , Animales , Ácidos Carboxílicos/metabolismo , Resistencia a Medicamentos , Femenino , Ganado , Ratones , Parasitemia/veterinaria , Profármacos/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma congolense/efectos de los fármacos , Trypanosoma vivax/efectos de los fármacos , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/parasitología , Valina/metabolismo
6.
Genet Sel Evol ; 54(1): 58, 2022 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-36057548

RESUMEN

BACKGROUND: In cattle, genome-wide association studies (GWAS) have largely focused on European or Asian breeds, using genotyping arrays that were primarily designed for European cattle. Because there is growing interest in performing GWAS in African breeds, we have assessed the performance of 23 commercial bovine genotyping arrays for capturing the diversity across African breeds and performing imputation. We used 409 whole-genome sequences (WGS) spanning global cattle breeds, and a real cohort of 2481 individuals (including African breeds) that were genotyped with the Illumina high-density (HD) array and the GeneSeek bovine 50 k array. RESULTS: We found that commercially available arrays were not effective in capturing variants that segregate among African indicine animals. Only 6% of these variants in high linkage disequilibrium (LD) (r2 > 0.8) were on the best performing arrays, which contrasts with the 17% and 25% in African and European taurine cattle, respectively. However, imputation from available HD arrays can successfully capture most variants (accuracies up to 0.93), mainly when using a global, not continent-specific, reference panel, which partially reflects the unusually high levels of admixture on the continent. When considering functional variants, the GGPF250 array performed best for tagging WGS variants and imputation. Finally, we show that imputation from low-density arrays can perform almost as well as HD arrays, if a two-stage imputation approach is adopted, i.e. first imputing to HD and then to WGS, which can potentially reduce the costs of GWAS. CONCLUSIONS: Our results show that the choice of an array should be based on a balance between the objective of the study and the breed/population considered, with the HD and BOS1 arrays being the best choice for both taurine and indicine breeds when performing GWAS, and the GGPF250 being preferable for fine-mapping studies. Moreover, our results suggest that there is no advantage to using the indicus-specific arrays for indicus breeds, regardless of the objective. Finally, we show that using a reference panel that better represents global bovine diversity improves imputation accuracy, particularly for non-European taurine populations.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Animales , Bovinos/genética , Genotipo , Desequilibrio de Ligamiento
7.
Proc Natl Acad Sci U S A ; 116(45): 22774-22782, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31636179

RESUMEN

African trypanosomes use an extreme form of antigenic variation to evade host immunity, involving the switching of expressed variant surface glycoproteins by a stochastic and parasite-intrinsic process. Parasite development in the mammalian host is another feature of the infection dynamic, with trypanosomes undergoing quorum sensing (QS)-dependent differentiation between proliferative slender forms and arrested, transmissible, stumpy forms. Longstanding experimental studies have suggested that the frequency of antigenic variation and transmissibility may be linked, antigen switching being higher in developmentally competent, fly-transmissible, parasites ("pleomorphs") than in serially passaged "monomorphic" lines that cannot transmit through flies. Here, we have directly tested this tenet of the infection dynamic by using 2 experimental systems to reduce pleomorphism. Firstly, lines were generated that inducibly lose developmental capacity through RNAi-mediated silencing of the QS signaling machinery ("inducible monomorphs"). Secondly, de novo lines were derived that have lost the capacity for stumpy formation by serial passage ("selected monomorphs") and analyzed for their antigenic variation in comparison to isogenic preselected populations. Analysis of both inducible and selected monomorphs has established that antigen switch frequency and developmental capacity are independently selected traits. This generates the potential for diverse infection dynamics in different parasite populations where the rate of antigenic switching and transmission competence are uncoupled. Further, this may support the evolution, maintenance, and spread of important trypanosome variants such as Trypanosoma brucei evansi that exploit mechanical transmission.


Asunto(s)
Antígenos de Protozoos/inmunología , Trypanosoma brucei brucei/inmunología , Animales , Antígenos de Protozoos/genética , Interferencia de ARN , Glicoproteínas Variantes de Superficie de Trypanosoma/genética
8.
Circulation ; 137(1): 57-70, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29030345

RESUMEN

BACKGROUND: Myocardial infarction (MI) is a leading cause of heart failure and death worldwide. Preservation of contractile function and protection against adverse changes in ventricular architecture (cardiac remodeling) are key factors to limiting progression of this condition to heart failure. Consequently, new therapeutic targets are urgently required to achieve this aim. Expression of the Runx1 transcription factor is increased in adult cardiomyocytes after MI; however, the functional role of Runx1 in the heart is unknown. METHODS: To address this question, we have generated a novel tamoxifen-inducible cardiomyocyte-specific Runx1-deficient mouse. Mice were subjected to MI by means of coronary artery ligation. Cardiac remodeling and contractile function were assessed extensively at the whole-heart, cardiomyocyte, and molecular levels. RESULTS: Runx1-deficient mice were protected against adverse cardiac remodeling after MI, maintaining ventricular wall thickness and contractile function. Furthermore, these mice lacked eccentric hypertrophy, and their cardiomyocytes exhibited markedly improved calcium handling. At the mechanistic level, these effects were achieved through increased phosphorylation of phospholamban by protein kinase A and relief of sarco/endoplasmic reticulum Ca2+-ATPase inhibition. Enhanced sarco/endoplasmic reticulum Ca2+-ATPase activity in Runx1-deficient mice increased sarcoplasmic reticulum calcium content and sarcoplasmic reticulum-mediated calcium release, preserving cardiomyocyte contraction after MI. CONCLUSIONS: Our data identified Runx1 as a novel therapeutic target with translational potential to counteract the effects of adverse cardiac remodeling, thereby improving survival and quality of life among patients with MI.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/deficiencia , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Función Ventricular Izquierda , Remodelación Ventricular , Animales , Señalización del Calcio , Proteínas de Unión al Calcio/metabolismo , Células Cultivadas , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ratones Noqueados , Contracción Miocárdica , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/patología , Fosforilación , Conejos , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/patología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Factores de Tiempo
9.
Parasite Immunol ; 41(2): e12609, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30525202

RESUMEN

African trypanosomes (Trypanosoma brucei spp.) are extracellular, hemoflagellate, protozoan parasites. Mammalian infection begins when the tsetse fly vector injects trypanosomes into the skin during blood feeding. The trypanosomes then reach the draining lymph nodes before disseminating systemically. Intravital imaging of the skin post-tsetse fly bite revealed that trypanosomes were observed both extravascularly and intravascularly in the lymphatic vessels. Whether host-derived cues play a role in the attraction of the trypanosomes towards the lymphatic vessels to aid their dissemination from the site of infection is not known. Since chemokines can mediate the attraction of leucocytes towards the lymphatics, in vitro chemotaxis assays were used to determine whether chemokines might also act as chemoattractants for trypanosomes. Although microarray data suggested that the chemokines CCL8, CCL19, CCL21, CCL27 and CXCL12 were highly expressed in mouse skin, they did not stimulate the chemotaxis of T brucei. Certain chemokines also possess potent antimicrobial properties. However, none of the chemokines tested exerted any parasiticidal effects on T brucei. Thus, our data suggest that host-derived chemokines do not act as chemoattractants for T brucei. Identification of the mechanisms used by trypanosomes to establish host infection will aid the development of novel approaches to block disease transmission.


Asunto(s)
Quimiocinas/inmunología , Quimiotaxis , Trypanosoma brucei brucei/inmunología , Animales , Humanos , Ratones , Piel/inmunología , Piel/parasitología , Tripanosomiasis Africana/parasitología , Moscas Tse-Tse
10.
Vet Res ; 49(1): 54, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29970174

RESUMEN

Cattle are an economically important domestic animal species. In vitro 2D cultures of intestinal epithelial cells or epithelial cell lines have been widely used to study cell function and host-pathogen interactions in the bovine intestine. However, these cultures lack the cellular diversity encountered in the intestinal epithelium, and the physiological relevance of monocultures of transformed cell lines is uncertain. Little is also known of the factors that influence cell differentiation and homeostasis in the bovine intestinal epithelium, and few cell-specific markers that can distinguish the different intestinal epithelial cell lineages have been reported. Here we describe a simple and reliable procedure to establish in vitro 3D enteroid, or "mini gut", cultures from bovine small intestinal (ileal) crypts. These enteroids contained a continuous central lumen lined with a single layer of polarized enterocytes, bound by tight junctions with abundant microvilli on their apical surfaces. Histological and transcriptional analyses suggested that the enteroids comprised a mixed population of intestinal epithelial cell lineages including intestinal stem cells, enterocytes, Paneth cells, goblet cells and enteroendocrine cells. We show that bovine enteroids can be successfully maintained long-term through multiple serial passages without observable changes to their growth characteristics, morphology or transcriptome. Furthermore, the bovine enteroids can be cryopreserved and viable cultures recovered from frozen stocks. Our data suggest that these 3D bovine enteroid cultures represent a novel, physiologically-relevant and tractable in vitro system in which epithelial cell differentiation and function, and host-pathogen interactions in the bovine small intestine can be studied.


Asunto(s)
Técnicas de Cultivo de Célula/veterinaria , Diferenciación Celular , Células Epiteliales/fisiología , Íleon/fisiología , Animales , Bovinos , Técnicas de Cultivo de Célula/métodos , Células Cultivadas/fisiología , Células Epiteliales/citología
11.
Vet Res ; 48(1): 42, 2017 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-28800747

RESUMEN

Gastrointestinal disease caused by the apicomplexan parasite Cryptosporidium parvum is one of the most important diseases of young ruminant livestock, particularly neonatal calves. Infected animals may suffer from profuse watery diarrhoea, dehydration and in severe cases death can occur. At present, effective therapeutic and preventative measures are not available and a better understanding of the host-pathogen interactions is required. Cryptosporidium parvum is also an important zoonotic pathogen causing severe disease in people, with young children being particularly vulnerable. Our knowledge of the immune responses induced by Cryptosporidium parasites in clinically relevant hosts is very limited. This review discusses the impact of bovine cryptosporidiosis and describes how a thorough understanding of the host-pathogen interactions may help to identify novel prevention and control strategies.


Asunto(s)
Enfermedades de los Bovinos/parasitología , Criptosporidiosis/parasitología , Cryptosporidium parvum , Interacciones Huésped-Parásitos/fisiología , Animales , Bovinos/parasitología , Enfermedades de los Bovinos/fisiopatología , Enfermedades de los Bovinos/prevención & control , Criptosporidiosis/fisiopatología , Criptosporidiosis/prevención & control , Cryptosporidium parvum/fisiología
12.
Parasitology ; 143(14): 1862-1889, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27719692

RESUMEN

Pathogenic animal trypanosomes affecting livestock have represented a major constraint to agricultural development in Africa for centuries, and their negative economic impact is increasing in South America and Asia. Chemotherapy and chemoprophylaxis represent the main means of control. However, research into new trypanocides has remained inadequate for decades, leading to a situation where the few compounds available are losing efficacy due to the emergence of drug-resistant parasites. In this review, we provide a comprehensive overview of the current options available for the treatment and prophylaxis of the animal trypanosomiases, with a special focus on the problem of resistance. The key issues surrounding the main economically important animal trypanosome species and the diseases they cause are also presented. As new investment becomes available to develop improved tools to control the animal trypanosomiases, we stress that efforts should be directed towards a better understanding of the biology of the relevant parasite species and strains, to identify new drug targets and interrogate resistance mechanisms.


Asunto(s)
Tripanocidas/uso terapéutico , Trypanosoma/patogenicidad , Tripanosomiasis Africana/veterinaria , Tripanosomiasis Bovina/tratamiento farmacológico , Tripanosomiasis/veterinaria , Moscas Tse-Tse/parasitología , África/epidemiología , Animales , Asia/epidemiología , Bovinos , Resistencia a Medicamentos , Insectos Vectores/parasitología , América del Sur/epidemiología , Trypanosoma/clasificación , Trypanosoma/efectos de los fármacos , Tripanosomiasis/tratamiento farmacológico , Tripanosomiasis/parasitología , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/epidemiología , Tripanosomiasis Africana/parasitología , Tripanosomiasis Bovina/epidemiología
13.
Sci Rep ; 14(1): 4158, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378867

RESUMEN

Animal African trypanosomiasis (AAT) is a significant food security and economic burden in sub-Saharan Africa. Current AAT empirical and immunodiagnostic surveillance tools suffer from poor sensitivity and specificity, with blood sampling requiring animal restraint and trained personnel. Faecal sampling could increase sampling accessibility, scale, and species range. Therefore, this study assessed feasibility of detecting Trypanosoma DNA in the faeces of experimentally-infected cattle. Holstein-Friesian calves were inoculated with Trypanosoma brucei brucei AnTat 1.1 (n = 5) or T. congolense Savannah IL3000 (n = 6) in separate studies. Faecal and blood samples were collected concurrently over 10 weeks and screened using species-specific PCR and qPCR assays. T. brucei DNA was detected in 85% of post-inoculation (PI) faecal samples (n = 114/134) by qPCR and 50% by PCR between 4 and 66 days PI. However, T. congolense DNA was detected in just 3.4% (n = 5/145) of PI faecal samples by qPCR, and none by PCR. These results confirm the ability to consistently detect T. brucei DNA, but not T. congolense DNA, in infected cattle faeces. This disparity may derive from the differences in Trypanosoma species tissue distribution and/or extravasation. Therefore, whilst faeces are a promising substrate to screen for T. brucei infection, blood sampling is required to detect T. congolense in cattle.


Asunto(s)
Trypanosoma brucei brucei , Trypanosoma congolense , Trypanosoma , Tripanosomiasis Africana , Humanos , Bovinos , Animales , Trypanosoma brucei brucei/genética , Trypanosoma congolense/genética , Tripanosomiasis Africana/diagnóstico , Tripanosomiasis Africana/veterinaria , Tripanosomiasis Africana/epidemiología , Trypanosoma/genética , ADN , Heces
14.
Commun Biol ; 7(1): 792, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951693

RESUMEN

The African buffalo (Syncerus caffer) is a wild bovid with a historical distribution across much of sub-Saharan Africa. Genomic analysis can provide insights into the evolutionary history of the species, and the key selective pressures shaping populations, including assessment of population level differentiation, population fragmentation, and population genetic structure. In this study we generated the highest quality de novo genome assembly (2.65 Gb, scaffold N50 69.17 Mb) of African buffalo to date, and sequenced a further 195 genomes from across the species distribution. Principal component and admixture analyses provided little support for the currently described four subspecies. Estimating Effective Migration Surfaces analysis suggested that geographical barriers have played a significant role in shaping gene flow and the population structure. Estimated effective population sizes indicated a substantial drop occurring in all populations 5-10,000 years ago, coinciding with the increase in human populations. Finally, signatures of selection were enriched for key genes associated with the immune response, suggesting infectious disease exert a substantial selective pressure upon the African buffalo. These findings have important implications for understanding bovid evolution, buffalo conservation and population management.


Asunto(s)
Búfalos , Genoma , Genómica , Búfalos/genética , Animales , Genómica/métodos , Flujo Génico , África del Sur del Sahara , Genética de Población , Filogenia , Variación Genética
15.
Virulence ; 14(1): 2150445, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36419235

RESUMEN

African trypanosomes are vector-borne protozoa, which cause significant human and animal disease across sub-Saharan Africa, and animal disease across Asia and South America. In humans, infection is caused by variants of Trypanosoma brucei, and is characterized by varying rate of progression to neurological disease, caused by parasites exiting the vasculature and entering the brain. Animal disease is caused by multiple species of trypanosome, primarily T. congolense, T. vivax, and T. brucei. These trypanosomes also infect multiple species of mammalian host, and this complexity of trypanosome and host diversity is reflected in the spectrum of severity of disease in animal trypanosomiasis, ranging from hyperacute infections associated with mortality to long-term chronic infections, and is also a main reason why designing interventions for animal trypanosomiasis is so challenging. In this review, we will provide an overview of the current understanding of trypanosome determinants of infection progression and severity, covering laboratory models of disease, as well as human and livestock disease. We will also highlight gaps in knowledge and capabilities, which represent opportunities to both further our fundamental understanding of how trypanosomes cause disease, as well as facilitating the development of the novel interventions that are so badly needed to reduce the burden of disease caused by these important pathogens.


Asunto(s)
Trypanosoma , Tripanosomiasis Africana , Tripanosomiasis , Moscas Tse-Tse , Animales , Humanos , Tripanosomiasis Africana/parasitología , Virulencia , Moscas Tse-Tse/parasitología , Mamíferos
16.
Front Genet ; 14: 1197160, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37576560

RESUMEN

The control of tick-borne haemoparasites in cattle largely relies on the use of acaricide drugs against the tick vectors, with some vaccination also being used against selected pathogens. These interventions can be difficult in Africa, where accessibility and cost of vaccines can be issues, and the increasing resistance of tick vectors to the widely used acaricides is a complication to disease control. A potential complementary control strategy could be the exploitation of any natural host genetic resistance to the pathogens. However, there are currently very few estimates of the extent of host resistance to tick-borne haemoparasites, and a significant contributing factor to this knowledge gap is likely to be the difficulty of collecting appropriate samples and data in the smallholder systems that predominate livestock production in low- and middle-income countries, particularly at scale. In this study, we have estimated the heritability for the presence/absence of several important haemoparasite species (including Anaplasma marginale, Babesia bigemina, Babesia bovis, and Ehrlichia ruminantium), as well as for relevant traits such as body weight and body condition score (BCS), in 1,694 cattle from four African countries (Burkina Faso, Ghana, Nigeria, and Tanzania). Heritability estimates within countries were mostly not significant, ranging from 0.05 to 0.84 across traits and countries, with standard errors between 0.07 and 0.91. However, the weighted mean of heritability estimates was moderate and significant for body weight and BCS (0.40 and 0.49, respectively), with significant heritabilities also observed for the presence of A. marginale (0.16) and E. ruminantium (0.19). In a meta-analysis of genome-wide association studies (GWAS) for these traits, two peaks were identified as reaching the suggestive significance threshold (p < 1.91 × 10-7 and p < 1.89 × 10-7, respectively): one on chromosome 24 for BCS and one on chromosome 8 for the E. ruminantium infection status. These findings indicate that there is likely to be a genetic basis that contributes to pathogen presence/absence for tick-borne haemoparasite species, which could potentially be exploited to improve cattle resistance in Africa to the economically important diseases caused by these pathogens.

17.
Artículo en Inglés | MEDLINE | ID: mdl-37866107

RESUMEN

East Coast Fever (ECF) is a disease affecting cattle in sub-Saharan Africa, caused by the tick-borne Apicomplexan pathogen Theileria parva. The disease is a major problem for cattle farmers in affected regions and there are few methods of control, including a complex infection and treatment vaccine, expensive chemotherapy, and the more widespread tick control through acaricides. New intervention strategies are, therefore, sorely needed. Benzoxaboroles are a versatile class of boron-heterocyclic compounds with demonstrable pharmacological activity against a diverse group of pathogens, including those related to T. parva. In this study, the in vitro efficacy of three benzoxaboroles against the intracellular schizont stage of T. parva was investigated using a flow cytometry approach. Of the benzoxaboroles tested, only one showed any potency, albeit only at high concentrations, even though there is high protein sequence similarity in the CPSF3 protein target compared to other protozoan pathogen species. This finding suggests that benzoxaboroles currently of interest for the treatment of African animal trypanosomiasis, toxoplasmosis, cryptosporidiosis and malaria may not be suitable for the treatment of ECF. We conclude that testing of further benzoxaborole compounds is needed to fully determine whether any lead compounds can be identified to target T. parva.


Asunto(s)
Enfermedades de los Bovinos , Theileria parva , Theileriosis , Bovinos , Animales , Theileriosis/tratamiento farmacológico , Theileriosis/parasitología , Enfermedades de los Bovinos/parasitología
18.
Genome Biol ; 24(1): 127, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37218021

RESUMEN

BACKGROUND: Understanding the variation between well and poorly adapted cattle breeds to local environments and pathogens is essential for breeding cattle with improved climate and disease-resistant phenotypes. Although considerable progress has been made towards identifying genetic differences between breeds, variation at the epigenetic and chromatin levels remains poorly characterized. Here, we generate, sequence and analyse over 150 libraries at base-pair resolution to explore the dynamics of DNA methylation and chromatin accessibility of the bovine immune system across three distinct cattle lineages. RESULTS: We find extensive epigenetic divergence between the taurine and indicine cattle breeds across immune cell types, which is linked to the levels of local DNA sequence divergence between the two cattle sub-species. The unique cell type profiles enable the deconvolution of complex cellular mixtures using digital cytometry approaches. Finally, we show distinct sub-categories of CpG islands based on their chromatin and methylation profiles that discriminate between classes of distal and gene proximal islands linked to discrete transcriptional states. CONCLUSIONS: Our study provides a comprehensive resource of DNA methylation, chromatin accessibility and RNA expression profiles of three diverse cattle populations. The findings have important implications, from understanding how genetic editing across breeds, and consequently regulatory backgrounds, may have distinct impacts to designing effective cattle epigenome-wide association studies in non-European breeds.


Asunto(s)
Cromatina , Epigenoma , Animales , Bovinos/genética , Fenotipo , Islas de CpG , Polimorfismo de Nucleótido Simple
19.
Vaccines (Basel) ; 11(6)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37376488

RESUMEN

Studying the antibody response to infection or vaccination is essential for developing more effective vaccines and therapeutics. Advances in high-throughput antibody sequencing technologies and immunoinformatic tools now allow the fast and comprehensive analysis of antibody repertoires at high resolution in any species. Here, we detail a flexible and customizable suite of methods from flow cytometry, single cell sorting, heavy and light chain amplification to antibody sequencing in cattle. These methods were used successfully, including adaptation to the 10x Genomics platform, to isolate native heavy-light chain pairs. When combined with the Ig-Sequence Multi-Species Annotation Tool, this suite represents a powerful toolkit for studying the cattle antibody response with high resolution and precision. Using three workflows, we processed 84, 96, and 8313 cattle B cells from which we sequenced 24, 31, and 4756 antibody heavy-light chain pairs, respectively. Each method has strengths and limitations in terms of the throughput, timeline, specialist equipment, and cost that are each discussed. Moreover, the principles outlined here can be applied to study antibody responses in other mammalian species.

20.
Appl Environ Microbiol ; 78(10): 3523-9, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22389374

RESUMEN

Recent studies have revealed extensive genetic variation among isolates of Cryptosporidium parvum, an Apicomplexan parasite that causes gastroenteritis in both humans and animals worldwide. The parasite's population structure is influenced by the intensity of transmission, the host-parasite interaction, and husbandry practices. As a result, C. parvum populations can be panmictic, clonal, or even epidemic on both a local scale and a larger geographical scale. To extend the study of C. parvum populations to an unexplored region, 173 isolates of C. parvum collected in Italy from humans and livestock (calf, sheep, and goat) over a 10-year period were genotyped using a multilocus scheme based on 7 mini- and microsatellite loci. In agreement with other studies, extensive polymorphism was observed, with 102 distinct multilocus genotypes (MLGs) identified among 173 isolates. The presence of linkage disequilibrium, the confinement of MLGs to individual farms, and the relationship of many MLGs inferred using network analysis (eBURST) suggest a predominantly clonal population structure, but there is also evidence that part of the diversity can be explained by genetic exchange. MLGs from goats were found to differ from bovine and sheep MLGs, supporting the existence of C. parvum subpopulations. Finally, MLGs from isolates collected between 1997 and 1999 were also identified as a distinct subgroup in principal-component analysis and eBURST analysis, suggesting a continuous introduction of novel genotypes in the parasite population.


Asunto(s)
Criptosporidiosis/epidemiología , Criptosporidiosis/parasitología , Cryptosporidium parvum/clasificación , Cryptosporidium parvum/aislamiento & purificación , Variación Genética , Animales , Bovinos , Análisis por Conglomerados , Cryptosporidium parvum/genética , Genotipo , Cabras , Humanos , Italia/epidemiología , Repeticiones de Microsatélite , Epidemiología Molecular , Ovinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA