Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Environ Microbiol ; 26(5): e16633, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38733078

RESUMEN

Soil is home to a multitude of microorganisms from all three domains of life. These organisms and their interactions are crucial in driving the cycling of soil carbon. One key indicator of this process is Microbial Carbon Use Efficiency (CUE), which shows how microbes influence soil carbon storage through their biomass production. Although CUE varies among different microorganisms, there have been few studies that directly examine how biotic factors influence CUE. One such factor could be body size, which can impact microbial growth rates and interactions in soil, thereby influencing CUE. Despite this, evidence demonstrating a direct causal connection between microbial biodiversity and CUE is still scarce. To address these knowledge gaps, we conducted an experiment where we manipulated microbial body size and biodiversity through size-selective filtering. Our findings show that manipulating the structure of the microbial community can reduce CUE by approximately 65%. When we restricted the maximum body size of the microbial community, we observed a reduction in bacterial diversity and functional potential, which in turn lowered the community's CUE. Interestingly, when we included large body size micro-eukarya in the soil, it shifted the soil carbon cycling, increasing CUE by approximately 50% and the soil carbon to nitrogen ratio by about 25%. Our metrics of microbial diversity and community structure were able to explain 36%-50% of the variation in CUE. This highlights the importance of microbial traits, community structure and trophic interactions in mediating soil carbon cycling.


Asunto(s)
Bacterias , Biodiversidad , Carbono , Microbiología del Suelo , Suelo , Carbono/metabolismo , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Bacterias/genética , Suelo/química , Microbiota/fisiología , Ciclo del Carbono , Nitrógeno/metabolismo , Biomasa , Eucariontes/metabolismo , Eucariontes/crecimiento & desarrollo
2.
Glob Chang Biol ; 30(1): e17030, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38010627

RESUMEN

Nitrogen (N) deposition increases soil carbon (C) storage by reducing microbial activity. These effects vary in soil beneath trees that associate with arbuscular (AM) and ectomycorrhizal (ECM) fungi. Variation in carbon C and N uptake traits among microbes may explain differences in soil nutrient cycling between mycorrhizal associations in response to high N loads, a mechanism not previously examined due to methodological limitations. Here, we used quantitative Stable Isotope Probing (qSIP) to measure bacterial C and N assimilation rates from an added organic compound, which we conceptualize as functional traits. As such, we applied a trait-based approach to explore whether variation in assimilation rates of bacterial taxa can inform shifts in soil function under chronic N deposition. We show taxon-specific and community-wide declines of bacterial C and N uptake under chronic N deposition in both AM and ECM soils. N deposition-induced reductions in microbial activity were mirrored by declines in soil organic matter mineralization rates in AM but not ECM soils. Our findings suggest C and N uptake traits of bacterial communities can predict C cycling feedbacks to N deposition in AM soils, but additional data, for instance on the traits of fungi, may be needed to connect microbial traits with soil C and N cycling in ECM systems. Our study also highlights the potential of employing qSIP in conjunction with trait-based analytical approaches to inform how ecological processes of microbial communities influence soil functioning.


Asunto(s)
Micorrizas , Micorrizas/fisiología , Árboles/microbiología , Nitrógeno , Suelo , Microbiología del Suelo , Bacterias , Carbono
3.
Appl Environ Microbiol ; 89(3): e0154322, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36847530

RESUMEN

Increases in Arctic temperatures have thawed permafrost and accelerated tundra soil microbial activity, releasing greenhouse gases that amplify climate warming. Warming over time has also accelerated shrub encroachment in the tundra, altering plant input abundance and quality, and causing further changes to soil microbial processes. To better understand the effects of increased temperature and the accumulated effects of climate change on soil bacterial activity, we quantified the growth responses of individual bacterial taxa to short-term warming (3 months) and long-term warming (29 years) in moist acidic tussock tundra. Intact soil was assayed in the field for 30 days using 18O-labeled water, from which taxon-specific rates of 18O incorporation into DNA were estimated as a proxy for growth. Experimental treatments warmed the soil by approximately 1.5°C. Short-term warming increased average relative growth rates across the assemblage by 36%, and this increase was attributable to emergent growing taxa not detected in other treatments that doubled the diversity of growing bacteria. However, long-term warming increased average relative growth rates by 151%, and this was largely attributable to taxa that co-occurred in the ambient temperature controls. There was also coherence in relative growth rates within broad taxonomic levels with orders tending to have similar growth rates in all treatments. Growth responses tended to be neutral in short-term warming and positive in long-term warming for most taxa and phylogenetic groups co-occurring across treatments regardless of phylogeny. Taken together, growing bacteria responded distinctly to short-term and long-term warming, and taxa growing in each treatment exhibited deep phylogenetic organization. IMPORTANCE Soil carbon stocks in the tundra and underlying permafrost have become increasingly vulnerable to microbial decomposition due to climate change. The microbial responses to Arctic warming must be understood in order to predict the effects of future microbial activity on carbon balance in a warming Arctic. In response to our warming treatments, tundra soil bacteria grew faster, consistent with increased rates of decomposition and carbon flux to the atmosphere. Our findings suggest that bacterial growth rates may continue to increase in the coming decades as faster growth is driven by the accumulated effects of long-term warming. Observed phylogenetic organization of bacterial growth rates may also permit taxonomy-based predictions of bacterial responses to climate change and inclusion into ecosystem models.


Asunto(s)
Ecosistema , Suelo , Filogenia , Tundra , Regiones Árticas , Cambio Climático , Carbono/metabolismo
4.
Environ Microbiol ; 24(1): 357-369, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34811865

RESUMEN

Soils are among the most biodiverse habitats on earth and while the species composition of microbial communities can influence decomposition rates and pathways, the functional significance of many microbial species and phylogenetic groups remains unknown. If bacteria exhibit phylogenetic organization in their function, this could enable ecologically meaningful classification of bacterial clades. Here, we show non-random phylogenetic organization in the rates of relative carbon assimilation for both rapidly mineralized substrates (amino acids and glucose) assimilated by many microbial taxa and slowly mineralized substrates (lipids and cellulose) assimilated by relatively few microbial taxa. When mapped onto bacterial phylogeny using ancestral character estimation this phylogenetic organization enabled the identification of clades involved in the decomposition of specific soil organic matter substrates. Phylogenetic organization in substrate assimilation could provide a basis for predicting the functional attributes of uncharacterized microbial taxa and understanding the significance of microbial community composition for soil organic matter decomposition.


Asunto(s)
Microbiota , Suelo , Bacterias , Microbiota/genética , Filogenia , Suelo/química , Microbiología del Suelo
5.
Glob Chang Biol ; 28(1): 128-139, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34587352

RESUMEN

The carbon stored in soil exceeds that of plant biomass and atmospheric carbon and its stability can impact global climate. Growth of decomposer microorganisms mediates both the accrual and loss of soil carbon. Growth is sensitive to temperature and given the vast biological diversity of soil microorganisms, the response of decomposer growth rates to warming may be strongly idiosyncratic, varying among taxa, making ecosystem predictions difficult. Here, we show that 15 years of warming by transplanting plant-soil mesocosms down in elevation, strongly reduced the growth rates of soil microorganisms, measured in the field using undisturbed soil. The magnitude of the response to warming varied among microbial taxa. However, the direction of the response-reduced growth-was universal and warming explained twofold more variation than did the sum of taxonomic identity and its interaction with warming. For this ecosystem, most of the growth responses to warming could be explained without taxon-specific information, suggesting that in some cases microbial responses measured in aggregate may be adequate for climate modeling. Long-term experimental warming also reduced soil carbon content, likely a consequence of a warming-induced increase in decomposition, as warming-induced changes in plant productivity were negligible. The loss of soil carbon and decreased microbial biomass with warming may explain the reduced growth of the microbial community, more than the direct effects of temperature on growth. These findings show that direct and indirect effects of long-term warming can reduce growth rates of soil microbes, which may have important feedbacks to global warming.


Asunto(s)
Microbiota , Suelo , Carbono , Cambio Climático , Ecosistema , Pradera , Microbiología del Suelo
6.
Glob Chang Biol ; 25(2): 549-561, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30537235

RESUMEN

Sea level rise and changes in precipitation can cause saltwater intrusion into historically freshwater wetlands, leading to shifts in microbial metabolism that alter greenhouse gas emissions and soil carbon sequestration. Saltwater intrusion modifies soil physicochemistry and can immediately affect microbial metabolism, but further alterations to biogeochemical processing can occur over time as microbial communities adapt to the changed environmental conditions. To assess temporal changes in microbial community composition and biogeochemical activity due to saltwater intrusion, soil cores were transplanted from a tidal freshwater marsh to a downstream mesohaline marsh and periodically sampled over 1 year. This experimental saltwater intrusion produced immediate changes in carbon mineralization rates, whereas shifts in the community composition developed more gradually. Salinity affected the composition of the prokaryotic community but did not exert a strong influence on the community composition of fungi. After only 1 week of saltwater exposure, carbon dioxide production doubled and methane production decreased by three orders of magnitude. By 1 month, carbon dioxide production in the transplant was comparable to the saltwater controls. Over time, we observed a partial recovery in methane production which strongly correlated with an increase in the relative abundance of three orders of hydrogenotrophic methanogens. Taken together, our results suggest that ecosystem responses to saltwater intrusion are dynamic over time as complex interactions develop between microbial communities and the soil organic carbon pool. The gradual changes in microbial community structure we observed suggest that previously freshwater wetlands may not experience an equilibration of ecosystem function until long after initial saltwater intrusion. Our results suggest that during this transitional period, likely lasting years to decades, these ecosystems may exhibit enhanced greenhouse gas production through greater soil respiration and continued methanogenesis.


Asunto(s)
Carbono/metabolismo , Cambio Climático , Microbiota , Salinidad , Microbiología del Suelo , Humedales , Carbono/química , Agua Dulce , Suelo/química , Virginia
7.
Environ Microbiol ; 20(3): 1112-1119, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29411496

RESUMEN

Nitrogen (N) is frequently a limiting nutrient in soil; its availability can govern ecosystem functions such as primary production and decomposition. Assimilation of N by microorganisms impacts the availability of N in soil. Despite its established ecological significance, the contributions of microbial taxa to N assimilation are unknown. Here we measure N uptake and use by microbial phylotypes and taxonomic groups within a diverse assemblage of soil microbes through quantitative stable isotope probing (qSIP) with 15 N. Following incubation with 15 NH4+, distinct patterns of 15 N assimilation among taxonomic groups were observed. For instance, glucose addition stimulated 15 N assimilation in most members of Actinobacteria and Proteobacteria but generally decreased 15 N use by Firmicutes and Bacteriodetes. While NH4+ is considered a preferred and universal source of N to prokaryotes, the majority (> 80%) of N assimilation in our soils could be attributed to a handful of active orders. Characterizing N assimilation of taxonomic groups with 15 N qSIP may provide a basis for understanding how microbial community composition influences N availability in the environment.


Asunto(s)
Actinobacteria/metabolismo , Compuestos de Amonio/metabolismo , Bacteroidetes/metabolismo , Firmicutes/metabolismo , Isótopos de Nitrógeno/metabolismo , Nitrógeno/análisis , Proteobacteria/metabolismo , Actinobacteria/clasificación , Bacteroidetes/clasificación , Ecología , Firmicutes/clasificación , Microbiota , Proteobacteria/clasificación , Suelo , Microbiología del Suelo
8.
Environ Microbiol ; 19(4): 1600-1611, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28120480

RESUMEN

Nitrogen (N) deposition affects myriad aspects of terrestrial ecosystem structure and function, and microbial communities may be particularly sensitive to anthropogenic N inputs. However, our understanding of N deposition effects on microbial communities is far from complete, especially for drylands where data are comparatively rare. To address the need for an improved understanding of dryland biological responses to N deposition, we conducted a two-year fertilization experiment in a semiarid grassland on the Colorado Plateau in the southwestern United States. We evaluated effects of varied levels of N inputs on archaeal, bacterial, fungal and chlorophyte community composition within three microhabitats: biological soil crusts (biocrusts), soil below biocrusts, and the plant rhizosphere. Surprisingly, N addition did not affect the community composition or diversity of any of these microbial groups; however, microbial community composition varied significantly among sampling microhabitats. Further, while plant richness, diversity, and cover showed no response to N addition, there were strong linkages between plant properties and microbial community structure. Overall, these findings highlight the potential for some dryland communities to have limited biotic ability to retain augmented N inputs, possibly leading to large N losses to the atmosphere and to aquatic systems.


Asunto(s)
Pradera , Nitrógeno/metabolismo , Microbiología del Suelo , Archaea , Biomasa , Colorado , Ecosistema , Hongos/metabolismo , Plantas/metabolismo , Rizosfera , Suelo/química
9.
Environ Microbiol ; 17(5): 1520-32, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25052305

RESUMEN

Accurate prediction of denitrification rates remains difficult, potentially owing to complex uncharacterized interactions between resource conditions and denitrifier communities. To better understand how the availability of organic matter (OM) and nitrate (NO3 (-) ), two of the resources most fundamental to denitrifiers, affect these populations and their activity, we performed an in situ resource manipulation in tidal freshwater wetland soils. Soils were augmented with OM to double ambient concentrations, using either compost or plant litter, and fertilized with KNO3 at two levels (low: ∼ 5 mg l(-1) NO3 (-) -N and high: ∼ 50 mg l(-1) NO3 (-) -N) in a full factorial design. Community composition of nirS-denitrifers (assessed using terminal restriction fragment length polymorphism) was interactively regulated by both NO3 (-) concentration and OM type, and the associated shifts in community composition were relatively consistent across sampling dates (6, 9 and 12 months of incubation). Denitrification potential (pDNF) rates were also strongly affected by NO3 (-) fertilization and increased by ∼ 10-100-fold. Path analysis revealed that the influence of resource availability on pDNF rates was largely mediated through changes in nirS-denitrifier community composition. These results suggest that a greater understanding of denitrifier community ecology may enable more accurate prediction of denitrification rates.


Asunto(s)
Desnitrificación/fisiología , Nitratos/metabolismo , Fenómenos Fisiológicos de las Plantas , Suelo/química , Humedales , Biota , Fenómenos Ecológicos y Ambientales , Fertilizantes , Agua Dulce , Plantas/genética , Polimorfismo de Longitud del Fragmento de Restricción , Microbiología del Suelo
10.
Appl Environ Microbiol ; 81(21): 7570-81, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26296731

RESUMEN

Bacteria grow and transform elements at different rates, and as yet, quantifying this variation in the environment is difficult. Determining isotope enrichment with fine taxonomic resolution after exposure to isotope tracers could help, but there are few suitable techniques. We propose a modification to stable isotope probing (SIP) that enables the isotopic composition of DNA from individual bacterial taxa after exposure to isotope tracers to be determined. In our modification, after isopycnic centrifugation, DNA is collected in multiple density fractions, and each fraction is sequenced separately. Taxon-specific density curves are produced for labeled and nonlabeled treatments, from which the shift in density for each individual taxon in response to isotope labeling is calculated. Expressing each taxon's density shift relative to that taxon's density measured without isotope enrichment accounts for the influence of nucleic acid composition on density and isolates the influence of isotope tracer assimilation. The shift in density translates quantitatively to isotopic enrichment. Because this revision to SIP allows quantitative measurements of isotope enrichment, we propose to call it quantitative stable isotope probing (qSIP). We demonstrated qSIP using soil incubations, in which soil bacteria exhibited strong taxonomic variations in (18)O and (13)C composition after exposure to [(18)O]water or [(13)C]glucose. The addition of glucose increased the assimilation of (18)O into DNA from [(18)O]water. However, the increase in (18)O assimilation was greater than expected based on utilization of glucose-derived carbon alone, because the addition of glucose indirectly stimulated bacteria to utilize other substrates for growth. This example illustrates the benefit of a quantitative approach to stable isotope probing.


Asunto(s)
Bacterias/clasificación , Bacterias/metabolismo , Biota , Microbiología Ambiental , Marcaje Isotópico/métodos , Bacterias/química , Bacterias/genética , Centrifugación por Gradiente de Densidad , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Análisis de Secuencia de ADN
11.
Glob Chang Biol ; 20(4): 1351-62, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24307658

RESUMEN

Climate change-associated sea level rise is expected to cause saltwater intrusion into many historically freshwater ecosystems. Of particular concern are tidal freshwater wetlands, which perform several important ecological functions including carbon sequestration. To predict the impact of saltwater intrusion in these environments, we must first gain a better understanding of how salinity regulates decomposition in natural systems. This study sampled eight tidal wetlands ranging from freshwater to oligohaline (0-2 ppt) in four rivers near the Chesapeake Bay (Virginia). To help isolate salinity effects, sites were selected to be highly similar in terms of plant community composition and tidal influence. Overall, salinity was found to be strongly negatively correlated with soil organic matter content (OM%) and C : N, but unrelated to the other studied environmental parameters (pH, redox, and above- and below-ground plant biomass). Partial correlation analysis, controlling for these environmental covariates, supported direct effects of salinity on the activity of carbon-degrading extracellular enzymes (ß-1, 4-glucosidase, 1, 4-ß-cellobiosidase, ß-D-xylosidase, and phenol oxidase) as well as alkaline phosphatase, using a per unit OM basis. As enzyme activity is the putative rate-limiting step in decomposition, enhanced activity due to salinity increases could dramatically affect soil OM accumulation. Salinity was also found to be positively related to bacterial abundance (qPCR of the 16S rRNA gene) and tightly linked with community composition (T-RFLP). Furthermore, strong relationships were found between bacterial abundance and/or composition with the activity of specific enzymes (1, 4-ß-cellobiosidase, arylsulfatase, alkaline phosphatase, and phenol oxidase) suggesting salinity's impact on decomposition could be due, at least in part, to its effect on the bacterial community. Together, these results indicate that salinity increases microbial decomposition rates in low salinity wetlands, and suggests that these ecosystems may experience decreased soil OM accumulation, accretion, and carbon sequestration rates even with modest levels of saltwater intrusion.


Asunto(s)
Microbiología del Suelo , Suelo/química , Humedales , Bahías , Ecosistema , Salinidad , Agua de Mar , Virginia
12.
Ecology ; 104(1): e3844, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35960179

RESUMEN

Soil bacteria and fungi mediate terrestrial biogeochemical cycling, but we know relatively little about how trophic interactions influence their community composition, diversity, and function. Specifically, it is unclear how consumer populations affect the activity of microbial taxa they consume, and therefore the interaction of those taxa with other members of the microbial community. Due to its extreme diversity, studying trophic dynamics in soil is a complex feat. Seeking to address these challenges, we performed a microcosm-based consumer manipulation experiment to determine the impact of a common fungal-feeding nematode (Aphelenchus avenae) on soil microbial community composition, diversity, and activity (e.g., C cycling parameters). Fungivory decreased fungal and bacterial α-diversity and stimulated C and N cycling, possibly via cascading impacts of fungivory on bacterial communities. Our results present experimental evidence that soil trophic dynamics are intimately linked with microbial diversity and function, factors that are key in understanding global patterns in biogeochemical cycling.


Asunto(s)
Microbiota , Nematodos , Animales , Suelo/química , Microbiología del Suelo , Bacterias , Carbono , Hongos
13.
ISME Commun ; 3(1): 73, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37454187

RESUMEN

Predicting ecosystem function is critical to assess and mitigate the impacts of climate change. Quantitative predictions of microbially mediated ecosystem processes are typically uninformed by microbial biodiversity. Yet new tools allow the measurement of taxon-specific traits within natural microbial communities. There is mounting evidence of a phylogenetic signal in these traits, which may support prediction and microbiome management frameworks. We investigated phylogeny-based trait prediction using bacterial growth rates from soil communities in Arctic, boreal, temperate, and tropical ecosystems. Here we show that phylogeny predicts growth rates of soil bacteria, explaining an average of 31%, and up to 58%, of the variation within ecosystems. Despite limited overlap in community composition across these ecosystems, shared nodes in the phylogeny enabled ancestral trait reconstruction and cross-ecosystem predictions. Phylogenetic relationships could explain up to 38% (averaging 14%) of the variation in growth rates across the highly disparate ecosystems studied. Our results suggest that shared evolutionary history contributes to similarity in the relative growth rates of related bacteria in the wild, allowing phylogeny-based predictions to explain a substantial amount of the variation in taxon-specific functional traits, within and across ecosystems.

14.
ISME J ; 17(4): 611-619, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36732614

RESUMEN

Study of life history strategies may help predict the performance of microorganisms in nature by organizing the complexity of microbial communities into groups of organisms with similar strategies. Here, we tested the extent that one common application of life history theory, the copiotroph-oligotroph framework, could predict the relative population growth rate of bacterial taxa in soils from four different ecosystems. We measured the change of in situ relative growth rate to added glucose and ammonium using both 18O-H2O and 13C quantitative stable isotope probing to test whether bacterial taxa sorted into copiotrophic and oligotrophic groups. We saw considerable overlap in nutrient responses across most bacteria regardless of phyla, with many taxa growing slowly and few taxa that grew quickly. To define plausible life history boundaries based on in situ relative growth rates, we applied Gaussian mixture models to organisms' joint 18O-13C signatures and found that across experimental replicates, few taxa could consistently be assigned as copiotrophs, despite their potential for fast growth. When life history classifications were assigned based on average relative growth rate at varying taxonomic levels, finer resolutions (e.g., genus level) were significantly more effective in capturing changes in nutrient response than broad taxonomic resolution (e.g., phylum level). Our results demonstrate the difficulty in generalizing bacterial life history strategies to broad lineages, and even to single organisms across a range of soils and experimental conditions. We conclude that there is a continued need for the direct measurement of microbial communities in soil to advance ecologically realistic frameworks.


Asunto(s)
Rasgos de la Historia de Vida , Suelo , Ecosistema , Microbiología del Suelo , Bacterias
15.
ISME J ; 16(5): 1318-1326, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34931028

RESUMEN

Secondary minerals (clays and metal oxides) are important components of the soil matrix. Clay minerals affect soil carbon persistence and cycling, and they also select for distinct microbial communities. Here we show that soil mineral assemblages-particularly short-range order minerals-affect both bacterial community composition and taxon-specific growth. Three soils with different parent material and presence of short-range order minerals were collected from ecosystems with similar vegetation and climate. These three soils were provided with 18O-labeled water and incubated with or without artificial root exudates or pine needle litter. Quantitative stable isotope probing was used to determine taxon-specific growth. We found that the growth of bacteria varied among soils of different mineral assemblages but found the trend of growth suppression in the presence of short-range order minerals. Relative growth of bacteria declined with increasing concentration of short-range order minerals between 25-36% of taxa present in all soils. Carbon addition in the form of plant litter or root exudates weakly affected relative growth of taxa (p = 0.09) compared to the soil type (p < 0.01). However, both exudate and litter carbon stimulated growth for at least 34% of families in the soils with the most and least short-range order minerals. In the intermediate short-range order soil, fresh carbon reduced growth for more bacterial families than were stimulated. These results highlight how bacterial-mineral-substrate interactions are critical to soil organic carbon processing, and how growth variation in bacterial taxa in these interactions may contribute to soil carbon persistence and loss.


Asunto(s)
Microbiota , Suelo , Bacterias/genética , Carbono , Humanos , Minerales , Suelo/química , Microbiología del Suelo
16.
mSystems ; 6(3)2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-33975966

RESUMEN

Episodic inputs of labile carbon (C) to soil can rapidly stimulate nitrogen (N) immobilization by soil microorganisms. However, the transcriptional patterns that underlie this process remain unclear. In order to better understand the regulation of N cycling in soil microbial communities, we conducted a 48-h laboratory incubation with agricultural soil where we stimulated the uptake of inorganic N by amending the soil with glucose. We analyzed the metagenome and metatranscriptome of the microbial communities at four time points that corresponded with changes in N availability. The relative abundances of genes remained largely unchanged throughout the incubation. In contrast, glucose addition rapidly increased the transcription of genes encoding ammonium and nitrate transporters, enzymes responsible for N assimilation into biomass, and genes associated with the N regulatory network. This upregulation coincided with an increase in transcripts associated with glucose breakdown and oxoglutarate production, demonstrating a connection between C and N metabolism. When concentrations of ammonium were low, we observed a transient upregulation of genes associated with the nitrogen-fixing enzyme nitrogenase. Transcripts for nitrification and denitrification were downregulated throughout the incubation, suggesting that dissimilatory transformations of N may be suppressed in response to labile C inputs in these soils. These results demonstrate that soil microbial communities can respond rapidly to changes in C availability by drastically altering the transcription of N cycling genes.IMPORTANCE A large portion of activity in soil microbial communities occurs in short time frames in response to an increase in C availability, affecting the biogeochemical cycling of nitrogen. These changes are of particular importance as nitrogen represents both a limiting nutrient for terrestrial plants as well as a potential pollutant. However, we lack a full understanding of the short-term effects of labile carbon inputs on the metabolism of microbes living in soil. Here, we found that soil microbial communities responded to labile carbon addition by rapidly transcribing genes encoding proteins and enzymes responsible for inorganic nitrogen acquisition, including nitrogen fixation. This work demonstrates that soil microbial communities respond within hours to carbon inputs through altered gene expression. These insights are essential for an improved understanding of the microbial processes governing soil organic matter production, decomposition, and nutrient cycling in natural and agricultural ecosystems.

17.
Sci Total Environ ; 767: 145440, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33636758

RESUMEN

Urbanization and agricultural intensification can transform landscapes. Changes in land-use can lead to increases in storm runoff and nutrient loadings which can impair the health and function of stream ecosystems. Microorganisms are an integral component of stream ecosystems. Due to the sensitivity of microorganisms to perturbations, changes in hydrology and water chemistry may alter microbial activity and structure. These shifts in microbial community dynamics may alter stream metabolism and water quality, potentially impacting higher trophic levels. Here we examine the effects of land-use and associated changes in water chemistry on sediment microbial communities by studying the West Run Watershed (WRW) a mixed-land-use system in West Virginia, USA. Streams were sampled throughout the growing season at six sites within the WRW spanning different levels of land use intensification. The proportion of land impacted by agricultural and urban development was positively correlated with temporal variation in stream sediment microbial community composition (adj R2 = 0.65), suggesting development can destabilize microbial communities. Moreover, streams in developed watersheds had an increased metabolic quotient (20-50% higher), this indicates that microorganisms have greater respiration per unit biomass and signifies reduced metabolic efficiency. Further, our results suggest that land use associated changes in water chemistry alter microbial function both directly and indirectly via changes in microbial community composition and biomass. Taken together our results suggest that highly developed watersheds with elevated conductivity, metal ion concentration, and pH impose stress on microbial communities resulting in reduced microbial efficiency and elevated respiration.


Asunto(s)
Biodiversidad , Ríos , Agricultura , Urbanización , West Virginia
18.
Nat Commun ; 12(1): 3381, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099669

RESUMEN

Nutrient amendment diminished bacterial functional diversity, consolidating carbon flow through fewer bacterial taxa. Here, we show strong differences in the bacterial taxa responsible for respiration from four ecosystems, indicating the potential for taxon-specific control over soil carbon cycling. Trends in functional diversity, defined as the richness of bacteria contributing to carbon flux and their equitability of carbon use, paralleled trends in taxonomic diversity although functional diversity was lower overall. Among genera common to all ecosystems, Bradyrhizobium, the Acidobacteria genus RB41, and Streptomyces together composed 45-57% of carbon flow through bacterial productivity and respiration. Bacteria that utilized the most carbon amendment (glucose) were also those that utilized the most native soil carbon, suggesting that the behavior of key soil taxa may influence carbon balance. Mapping carbon flow through different microbial taxa as demonstrated here is crucial in developing taxon-sensitive soil carbon models that may reduce the uncertainty in climate change projections.


Asunto(s)
Ciclo del Carbono , Cambio Climático , Nutrientes/metabolismo , Microbiología del Suelo , Suelo/química , Acidobacteria/genética , Acidobacteria/aislamiento & purificación , Acidobacteria/metabolismo , Biodiversidad , Bradyrhizobium/genética , Bradyrhizobium/aislamiento & purificación , Bradyrhizobium/metabolismo , Carbono/metabolismo , ADN Bacteriano/aislamiento & purificación , Seguimiento de Parámetros Ecológicos/métodos , Predicción/métodos , Fósforo/metabolismo , ARN Ribosómico 16S/genética , Streptomyces/genética , Streptomyces/aislamiento & purificación , Streptomyces/metabolismo
19.
ISME J ; 15(9): 2738-2747, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33782569

RESUMEN

Microorganisms drive soil carbon mineralization and changes in their activity with increased temperature could feedback to climate change. Variation in microbial biodiversity and the temperature sensitivities (Q10) of individual taxa may explain differences in the Q10 of soil respiration, a possibility not previously examined due to methodological limitations. Here, we show phylogenetic and taxonomic variation in the Q10 of growth (5-35 °C) among soil bacteria from four sites, one from each of Arctic, boreal, temperate, and tropical biomes. Differences in the temperature sensitivities of taxa and the taxonomic composition of communities determined community-assembled bacterial growth Q10, which was strongly predictive of soil respiration Q10 within and across biomes. Our results suggest community-assembled traits of microbial taxa may enable enhanced prediction of carbon cycling feedbacks to climate change in ecosystems across the globe.


Asunto(s)
Carbono , Suelo , Biodiversidad , Ecosistema , Filogenia , Microbiología del Suelo , Temperatura
20.
mBio ; 12(2)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33906922

RESUMEN

Predation structures food webs, influences energy flow, and alters rates and pathways of nutrient cycling through ecosystems, effects that are well documented for macroscopic predators. In the microbial world, predatory bacteria are common, yet little is known about their rates of growth and roles in energy flows through microbial food webs, in part because these are difficult to quantify. Here, we show that growth and carbon uptake were higher in predatory bacteria compared to nonpredatory bacteria, a finding across 15 sites, synthesizing 82 experiments and over 100,000 taxon-specific measurements of element flow into newly synthesized bacterial DNA. Obligate predatory bacteria grew 36% faster and assimilated carbon at rates 211% higher than nonpredatory bacteria. These differences were less pronounced for facultative predators (6% higher growth rates, 17% higher carbon assimilation rates), though high growth and carbon assimilation rates were observed for some facultative predators, such as members of the genera Lysobacter and Cytophaga, both capable of gliding motility and wolf-pack hunting behavior. Added carbon substrates disproportionately stimulated growth of obligate predators, with responses 63% higher than those of nonpredators for the Bdellovibrionales and 81% higher for the Vampirovibrionales, whereas responses of facultative predators to substrate addition were no different from those of nonpredators. This finding supports the ecological theory that higher productivity increases predator control of lower trophic levels. These findings also indicate that the functional significance of bacterial predators increases with energy flow and that predatory bacteria influence element flow through microbial food webs.IMPORTANCE The word "predator" may conjure images of leopards killing and eating impala on the African savannah or of great white sharks attacking elephant seals off the coast of California. But microorganisms are also predators, including bacteria that kill and eat other bacteria. While predatory bacteria have been found in many environments, it has been challenging to document their importance in nature. This study quantified the growth of predatory and nonpredatory bacteria in soils (and one stream) by tracking isotopically labeled substrates into newly synthesized DNA. Predatory bacteria were more active than nonpredators, and obligate predators, such as Bdellovibrionales and Vampirovibrionales, increased in growth rate in response to added substrates at the base of the food chain, strong evidence of trophic control. This work provides quantitative measures of predator activity and suggests that predatory bacteria-along with protists, nematodes, and phages-are active and important in microbial food webs.


Asunto(s)
Bacterias/crecimiento & desarrollo , Bacterias/genética , Fenómenos Fisiológicos Bacterianos , Animales , Bacterias/clasificación , Bacterias/metabolismo , Bacteriófagos , Carbono/metabolismo , ADN Bacteriano/genética , Deltaproteobacteria/genética , Deltaproteobacteria/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA