Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Metabolomics ; 16(9): 91, 2020 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-32851548

RESUMEN

INTRODUCTION: Repurposing of cationic amphiphilic drugs (CADs) emerges as an attractive therapeutic solution against various cancers, including leukemia. CADs target lysosomal lipid metabolism and preferentially kill cancer cells via induction of lysosomal membrane permeabilization, but the exact effects of CADs on the lysosomal lipid metabolism remain poorly illuminated. OBJECTIVES: We aimed to systematically monitor CAD-induced alterations in the quantitative lipid profiles of leukemia cell lines in order to chart effects of CADs on the metabolism of various lipid classes present in these cells. METHODS: We conducted this study on eight cultured cell lines representing two leukemia types, acute lymphoblastic leukemia and acute myeloid leukemia. Mass spectrometry-based quantitative shotgun lipidomics was employed to quantify the levels of around 400 lipid species of 26 lipid classes in the leukemia cell lines treated or untreated with a CAD, siramesine. RESULTS: The two leukemia types displayed high, but variable sensitivities to CADs and distinct profiles of cellular lipids. Treatment with siramesine rapidly altered the levels of diverse lipid classes in both leukemia types. These included sphingolipid classes previously reported to play key roles in CAD-induced cell death, but also lipids of other categories. We demonstrated that the treatment with siramesine additionally elevated the levels of numerous cytolytic lysoglycerophospholipids in positive correlation with the sensitivity of individual leukemia cell lines to siramesine. CONCLUSIONS: Our study shows that CAD treatment alters balance in the metabolism of glycerophospholipids, and proposes elevation in the levels of lysoglycerophospholipids as part of the mechanism leading to CAD-induced cell death of leukemia cells.


Asunto(s)
Muerte Celular/efectos de los fármacos , Leucemia/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Lípidos , Preparaciones Farmacéuticas , Línea Celular Tumoral , Supervivencia Celular , Humanos , Lipidómica , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Esfingolípidos/metabolismo
2.
Autophagy ; 11(8): 1408-24, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26114578

RESUMEN

Lysosomal membrane permeabilization (LMP) contributes to tissue involution, degenerative diseases, and cancer therapy. Its investigation has, however, been hindered by the lack of sensitive methods. Here, we characterize and validate the detection of galectin puncta at leaky lysosomes as a highly sensitive and easily manageable assay for LMP. LGALS1/galectin-1 and LGALS3/galectin-3 are best suited for this purpose due to their widespread expression, rapid translocation to leaky lysosomes and availability of high-affinity antibodies. Galectin staining marks individual leaky lysosomes early during lysosomal cell death and is useful when defining whether LMP is a primary or secondary cause of cell death. This sensitive method also reveals that cells can survive limited LMP and confirms a rapid formation of autophagic structures at the site of galectin puncta. Importantly, galectin staining detects individual leaky lysosomes also in paraffin-embedded tissues allowing us to demonstrate LMP in tumor xenografts in mice treated with cationic amphiphilic drugs and to identify a subpopulation of lysosomes that initiates LMP in involuting mouse mammary gland. The use of ectopic fluorescent galectins renders the galectin puncta assay suitable for automated screening and visualization of LMP in live cells and animals. Thus, the lysosomal galectin puncta assay opens up new possibilities to study LMP in cell death and its role in other cellular processes such as autophagy, senescence, aging, and inflammation.


Asunto(s)
Autofagia , Permeabilidad de la Membrana Celular , Galectinas/química , Lisosomas/metabolismo , Animales , Apoptosis , Proteínas Sanguíneas , Mama/patología , Caenorhabditis elegans/fisiología , Muerte Celular , Línea Celular Tumoral , Supervivencia Celular , Femenino , Galectina 1/metabolismo , Galectina 3/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Inflamación , Membranas Intracelulares/metabolismo , Células MCF-7 , Ratones , Microscopía Confocal , Trasplante de Neoplasias , Transporte de Proteínas
3.
J Innate Immun ; 7(4): 375-91, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25764971

RESUMEN

Macrophages provide a bridge linking innate and adaptive immunity. An increased frequency of macrophages and other myeloid cells paired with excessive cytokine production is commonly seen in the aging immune system, known as 'inflamm-aging'. It is presently unclear how healthy macrophages are maintained throughout life and what connects inflammation with myeloid dysfunction during aging. Autophagy, an intracellular degradation mechanism, has known links with aging and lifespan extension. Here, we show for the first time that autophagy regulates the acquisition of major aging features in macrophages. In the absence of the essential autophagy gene Atg7, macrophage populations are increased and key functions such as phagocytosis and nitrite burst are reduced, while the inflammatory cytokine response is significantly increased - a phenotype also observed in aged macrophages. Furthermore, reduced autophagy decreases surface antigen expression and skews macrophage metabolism toward glycolysis. We show that macrophages from aged mice exhibit significantly reduced autophagic flux compared to young mice. These data demonstrate that autophagy plays a critical role in the maintenance of macrophage homeostasis and function, regulating inflammation and metabolism and thereby preventing immunosenescence. Thus, autophagy modulation may prevent excess inflammation and preserve macrophage function during aging, improving immune responses and reducing the morbidity and mortality associated with inflamm-aging.


Asunto(s)
Envejecimiento/inmunología , Autofagia/inmunología , Macrófagos/inmunología , Proteínas Asociadas a Microtúbulos/inmunología , Envejecimiento/genética , Envejecimiento/patología , Animales , Autofagia/genética , Proteína 7 Relacionada con la Autofagia , Glucólisis/genética , Glucólisis/inmunología , Macrófagos/patología , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética
4.
Cell Death Discov ; 12015 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-26568842

RESUMEN

Decreased autophagy contributes to malignancies, however it is unclear how autophagy impacts on tumour growth. Acute myeloid leukemia (AML) is an ideal model to address this as (i) patient samples are easily accessible, (ii) the hematopoietic stem and progenitor population (HSPC) where transformation occurs is well characterized, and (iii) loss of the key autophagy gene Atg7 in hematopoietic stem and progenitor cells (HSPCs) leads to a lethal pre-leukemic phenotype in mice. Here we demonstrate that loss of Atg5 results in an identical HSPC phenotype as loss of Atg7, confirming a general role for autophagy in HSPC regulation. Compared to more committed/mature hematopoietic cells, healthy human and mouse HSCs displayed enhanced basal autophagic flux, limiting mitochondrial damage and reactive oxygen species in this long-lived population. Taken together, with our previous findings these data are compatible with autophagy limiting leukemic transformation. In line with this, autophagy gene losses are found within chromosomal regions that are commonly deleted in human AML. Moreover, human AML blasts showed reduced expression of autophagy genes, and displayed decreased autophagic flux with accumulation of unhealthy mitochondria indicating that deficient autophagy may be beneficial to human AML. Crucially, heterozygous loss of autophagy in an MLL-ENL model of AML led to increased proliferation in vitro, a glycolytic shift, and more aggressive leukemias in vivo. With autophagy gene losses also identified in multiple other malignancies, these findings point to low autophagy providing a general advantage for tumour growth.

5.
J Cell Biol ; 204(5): 713-27, 2014 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-24590173

RESUMEN

mTORC1 (mammalian target of rapamycin complex 1) integrates information regarding availability of nutrients and energy to coordinate protein synthesis and autophagy. Using ribonucleic acid interference screens for autophagy-regulating phosphatases in human breast cancer cells, we identify CIP2A (cancerous inhibitor of PP2A [protein phosphatase 2A]) as a key modulator of mTORC1 and autophagy. CIP2A associates with mTORC1 and acts as an allosteric inhibitor of mTORC1-associated PP2A, thereby enhancing mTORC1-dependent growth signaling and inhibiting autophagy. This regulatory circuit is reversed by ubiquitination and p62/SQSTM1-dependent autophagic degradation of CIP2A and subsequent inhibition of mTORC1 activity. Consistent with CIP2A's reported ability to protect c-Myc against proteasome-mediated degradation, autophagic degradation of CIP2A upon mTORC1 inhibition leads to destabilization of c-Myc. These data characterize CIP2A as a distinct regulator of mTORC1 and reveals mTORC1-dependent control of CIP2A degradation as a mechanism that links mTORC1 activity with c-Myc stability to coordinate cellular metabolism, growth, and proliferation.


Asunto(s)
Autoantígenos/fisiología , Proliferación Celular , Proteínas de la Membrana/fisiología , Complejos Multiproteicos/fisiología , Serina-Treonina Quinasas TOR/fisiología , Autoantígenos/genética , Autoantígenos/metabolismo , Autofagia/genética , Línea Celular Tumoral , Biología Computacional , Humanos , Péptidos y Proteínas de Señalización Intracelular , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteína Fosfatasa 2/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Interferencia de ARN , ARN Interferente Pequeño , Transducción de Señal , Ubiquitinación
6.
PLoS One ; 7(4): e35005, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22506061

RESUMEN

The expression of melanoma-associated antigens (MAA) being limited to normal melanocytes and melanomas, MAAs are ideal targets for immunotherapy and melanoma vaccines. As MAAs are derived from self, immune responses to these may be limited by thymic tolerance. The extent to which self-tolerance prevents efficient immune responses to MAAs remains unknown. The autoimmune regulator (AIRE) controls the expression of tissue-specific self-antigens in thymic epithelial cells (TECs). The level of antigens expressed in the TECs determines the fate of auto-reactive thymocytes. Deficiency in AIRE leads in both humans (APECED patients) and mice to enlarged autoreactive immune repertoires. Here we show increased IgG levels to melanoma cells in APECED patients correlating with autoimmune skin features. Similarly, the enlarged T cell repertoire in AIRE(-/-) mice enables them to mount anti-MAA and anti-melanoma responses as shown by increased anti-melanoma antibodies, and enhanced CD4(+) and MAA-specific CD8(+) T cell responses after melanoma challenge. We show that thymic expression of gp100 is under the control of AIRE, leading to increased gp100-specific CD8(+) T cell frequencies in AIRE(-/-) mice. TRP-2 (tyrosinase-related protein), on the other hand, is absent from TECs and consequently TRP-2 specific CD8(+) T cells were found in both AIRE(-/-) and AIRE(+/+) mice. This study emphasizes the importance of investigating thymic expression of self-antigens prior to their inclusion in vaccination and immunotherapy strategies.


Asunto(s)
Autoantígenos/inmunología , Tolerancia Inmunológica/inmunología , Melanoma Experimental/inmunología , Melanoma/inmunología , Timocitos/inmunología , Antígeno gp100 del Melanoma/inmunología , Animales , Anticuerpos Antineoplásicos/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/farmacología , Línea Celular Tumoral , Células Epiteliales/inmunología , Femenino , Humanos , Inmunoglobulina G/inmunología , Factores Inmunológicos/inmunología , Oxidorreductasas Intramoleculares/inmunología , Melanoma/terapia , Melanoma Experimental/terapia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Poliendocrinopatías Autoinmunes/sangre , Poliendocrinopatías Autoinmunes/inmunología , Autotolerancia/inmunología
7.
Autophagy ; 7(9): 1069-70, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21552009

RESUMEN

The regulated lysosomal degradation pathway of autophagy prevents cellular damage and thus protects from malignant transformation. Autophagy is also required for the maturation of various hematopoietic lineages, namely the erythroid and lymphoid ones, yet its role in adult hematopoietic stem cells (HSCs) remained unexplored. While normal HSCs sustain life-long hematopoiesis, malignant transformation of HSCs or early progenitors leads to leukemia. Mechanisms protecting HSCs from cellular damage are therefore essential to prevent hematopoietic malignancies. By conditionally deleting the essential autophagy gene Atg7 in the hematopoietic system, we found that autophagy is required for the maintenance of true HSCs and therefore also of downstream hematopoietic progenitors. Loss of autophagy in HSCs leads to the expansion of a progenitor cell population in the bone marrow, giving rise to a severe, invasive myeloproliferation, which strongly resembles human acute myeloid leukemia (AML).


Asunto(s)
Autofagia , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Sistema Hematopoyético/patología , Células Mieloides/patología , Animales , Proteína 7 Relacionada con la Autofagia , Proliferación Celular , Sistema Hematopoyético/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/deficiencia , Proteínas Asociadas a Microtúbulos/metabolismo , Células Mieloides/metabolismo
8.
Cell Cycle ; 10(11): 1719-25, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21512311

RESUMEN

Autophagy is a conserved cellular pathway responsible for the sequestration of spent organelles and protein aggregates from the cytoplasm and their delivery into lysosomes for degradation. Autophagy plays an important role in adaptation to starvation, in cell survival, immunity, development and cancer. Recent evidence in mice suggests that autophagic defects in hematopoietic stem cells (HSCs) may be implicated in leukemia. Indeed, mice lacking Atg7 in HSCs develop an atypical myeloproliferation resembling human myelodysplastic syndrome (MDS) progressing to acute myeloid leukemia (AML). Studies suggest that accumulation of damaged mitochondria and reactive oxygen species result in cell death of the majority of progenitor cells and, possibly, concomitant transformation of some surviving ones. Interestingly, bone marrow cells from MDS patients are characterized by mitochondrial abnormalities and increased cell death. A role for autophagy in the transformation to cancer has been proposed in other cancer types. This review focuses on autophagy in human MDS development and progression to AML within the context of the role of mitochondria, apoptosis and reactive oxygen species (ROS) in its pathogenesis.


Asunto(s)
Autofagia/fisiología , Leucemia Mieloide Aguda/etiología , Síndromes Mielodisplásicos/etiología , Células de la Médula Ósea/patología , Células de la Médula Ósea/ultraestructura , Humanos , Leucemia Mieloide Aguda/patología , Mitocondrias , Síndromes Mielodisplásicos/patología , Especies Reactivas de Oxígeno
9.
J Exp Med ; 208(3): 455-67, 2011 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-21339326

RESUMEN

The role of autophagy, a lysosomal degradation pathway which prevents cellular damage, in the maintenance of adult mouse hematopoietic stem cells (HSCs) remains unknown. Although normal HSCs sustain life-long hematopoiesis, malignant transformation of HSCs leads to leukemia. Therefore, mechanisms protecting HSCs from cellular damage are essential to prevent hematopoietic malignancies. In this study, we crippled autophagy in HSCs by conditionally deleting the essential autophagy gene Atg7 in the hematopoietic system. This resulted in the loss of normal HSC functions, a severe myeloproliferation, and death of the mice within weeks. The hematopoietic stem and progenitor cell compartment displayed an accumulation of mitochondria and reactive oxygen species, as well as increased proliferation and DNA damage. HSCs within the Lin(-)Sca-1(+)c-Kit(+) (LSK) compartment were significantly reduced. Although the overall LSK compartment was expanded, Atg7-deficient LSK cells failed to reconstitute the hematopoietic system of lethally irradiated mice. Consistent with loss of HSC functions, the production of both lymphoid and myeloid progenitors was impaired in the absence of Atg7. Collectively, these data show that Atg7 is an essential regulator of adult HSC maintenance.


Asunto(s)
Autofagia/fisiología , Células Madre Hematopoyéticas/fisiología , Proteínas Asociadas a Microtúbulos/fisiología , Animales , Apoptosis/fisiología , Proteína 7 Relacionada con la Autofagia , Proliferación Celular , Daño del ADN/fisiología , Femenino , Masculino , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Mitocondrias/fisiología , Trastornos Mieloproliferativos/fisiopatología , Especies Reactivas de Oxígeno/metabolismo , Células Madre/fisiología
10.
Autophagy ; 6(3): 423-5, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20215867

RESUMEN

Autophagy is crucial during tissue development, as the developing cell has to constantly adapt to cell-intrinsic and environmental changes. For instance, protein aggregates need to be cleared, superfluous organelles removed and cell shape adapted to the new function of the cell. One typical example of such a developmental adaptation is that of the red blood cell (RBC). In order to reach the smallest capillaries, the RBC has to reduce its size considerably and the nucleus is expelled from the developing RBC. However, it is still unclear how unwanted proteins, RNA and organelles are cleared during erythroid development. Using an autophagy-deficient murine model we show that mitophagy plays a nonredundant role in the developmental clearance of mitochondria in the erythroid lineage.


Asunto(s)
Eritrocitos/citología , Eritrocitos/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Animales , Autofagia/fisiología , Proteína 7 Relacionada con la Autofagia , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética
11.
Cell Cycle ; 9(10): 1901-6, 2010 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-20495377

RESUMEN

Erythrocytes are anucleated cells devoid of organelles. Expulsion of the nucleus from erythroblasts leads to the formation of reticulocytes, which still contain organelles. The mechanisms responsible for the final removal of organelles from developing erythroid cells are still being elucidated. Mitochondria are the most abundant organelles to be cleared for the completion of erythropoiesis. Macroautophagy, referred to as autophagy, is a regulated catabolic pathway consisting of the engulfment of cytoplasmic cargo by a double membraned-vesicle, the autophagosome, which typically then fuses to lysosomal compartments for the degradation of the sequestered material. Early electron microscopic observations of reticulocytes suggested the autophagic engulfment of mitochondria (mitophagy) as a possible mechanism for mitochondrial clearance in these. Recently, a number of studies have backed this hypothesis with molecular evidence. Indeed, the absence of Nix, which targets mitochondria to autophagosomes, or the deficiency of proteins in the autophagic pathway lead to impaired mitochondrial clearance from developing erythroid cells. Importantly, however, the extent to which the absence of mitophagy affects erythroid development differs depending on the model and gene investigated. This review will therefore focus on comparing the different studies of mitophagy in erythroid development and highlight some of the remaining controversial points.


Asunto(s)
Autofagia/fisiología , Eritrocitos/citología , Mitocondrias/metabolismo , Anemia/metabolismo , Animales , Apoptosis/genética , Apoptosis/fisiología , Autofagia/genética , Eritrocitos/metabolismo , Humanos , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA