Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Diabetologia ; 63(10): 2086-2094, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32894319

RESUMEN

Increasing evidence suggests that, although pancreatic islets can function autonomously to detect and respond to changes in the circulating glucose level, the brain cooperates with the islet to maintain glycaemic control. Here, we review the role of the central and autonomic nervous systems in the control of the endocrine pancreas, including mechanisms whereby the brain senses circulating blood glucose levels. We also examine whether dysfunction in these systems might contribute to complications of type 1 diabetes and the pathogenesis of type 2 diabetes. Graphical abstract.


Asunto(s)
Sistema Nervioso Autónomo/metabolismo , Glucemia/metabolismo , Sistema Nervioso Central/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucagón/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/inervación , Animales , Sistema Nervioso Autónomo/fisiopatología , Sistema Nervioso Central/fisiopatología , Diabetes Mellitus Tipo 2/fisiopatología , Humanos , Secreción de Insulina , Islotes Pancreáticos/metabolismo , Células Receptoras Sensoriales
2.
Nat Rev Neurosci ; 15(6): 367-78, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24840801

RESUMEN

Under normal conditions, food intake and energy expenditure are balanced by a homeostatic system that maintains stability of body fat content over time. However, this homeostatic system can be overridden by the activation of 'emergency response circuits' that mediate feeding responses to emergent or stressful stimuli. Inhibition of these circuits is therefore permissive for normal energy homeostasis to occur, and their chronic activation can cause profound, even life-threatening, changes in body fat mass. This Review highlights how the interplay between homeostatic and emergency feeding circuits influences the biologically defended level of body weight under physiological and pathophysiological conditions.


Asunto(s)
Ingestión de Alimentos/fisiología , Metabolismo Energético/fisiología , Trastornos de Alimentación y de la Ingestión de Alimentos/fisiopatología , Neurobiología , Animales , Encéfalo/patología , Encéfalo/fisiología , Conducta Alimentaria , Trastornos de Alimentación y de la Ingestión de Alimentos/genética , Trastornos de Alimentación y de la Ingestión de Alimentos/patología , Homeostasis , Humanos
3.
Nature ; 503(7474): 59-66, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24201279

RESUMEN

Although a prominent role for the brain in glucose homeostasis was proposed by scientists in the nineteenth century, research throughout most of the twentieth century focused on evidence that the function of pancreatic islets is both necessary and sufficient to explain glucose homeostasis, and that diabetes results from defects of insulin secretion, action or both. However, insulin-independent mechanisms, referred to as 'glucose effectiveness', account for roughly 50% of overall glucose disposal, and reduced glucose effectiveness also contributes importantly to diabetes pathogenesis. Although mechanisms underlying glucose effectiveness are poorly understood, growing evidence suggests that the brain can dynamically regulate this process in ways that improve or even normalize glycaemia in rodent models of diabetes. Here we present evidence of a brain-centred glucoregulatory system (BCGS) that can lower blood glucose levels via both insulin-dependent and -independent mechanisms, and propose a model in which complex and highly coordinated interactions between the BCGS and pancreatic islets promote normal glucose homeostasis. Because activation of either regulatory system can compensate for failure of the other, defects in both may be required for diabetes to develop. Consequently, therapies that target the BCGS in addition to conventional approaches based on enhancing insulin effects may have the potential to induce diabetes remission, whereas targeting just one typically does not.


Asunto(s)
Encéfalo/metabolismo , Diabetes Mellitus/metabolismo , Glucosa/metabolismo , Homeostasis , Islotes Pancreáticos/metabolismo , Animales , Glucemia/metabolismo , Humanos , Insulina/metabolismo
4.
Proc Natl Acad Sci U S A ; 113(14): E2073-82, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-27001850

RESUMEN

Previous studies implicate the hypothalamic ventromedial nucleus (VMN) in glycemic control. Here, we report that selective inhibition of the subset of VMN neurons that express the transcription factor steroidogenic-factor 1 (VMN(SF1) neurons) blocks recovery from insulin-induced hypoglycemia whereas, conversely, activation of VMN(SF1) neurons causes diabetes-range hyperglycemia. Moreover, this hyperglycemic response is reproduced by selective activation of VMN(SF1) fibers projecting to the anterior bed nucleus of the stria terminalis (aBNST), but not to other brain areas innervated by VMN(SF1) neurons. We also report that neurons in the lateral parabrachial nucleus (LPBN), a brain area that is also implicated in the response to hypoglycemia, make synaptic connections with the specific subset of glucoregulatory VMN(SF1) neurons that project to the aBNST. These results collectively establish a physiological role in glucose homeostasis for VMN(SF1) neurons and suggest that these neurons are part of an ascending glucoregulatory LPBN→VMN(SF1)→aBNST neurocircuit.


Asunto(s)
Glucemia/metabolismo , Neuronas Aferentes/fisiología , Núcleo Hipotalámico Ventromedial/fisiología , Animales , Insulina/administración & dosificación , Ratones , Núcleo Hipotalámico Ventromedial/citología
5.
Physiol Rev ; 91(2): 389-411, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21527729

RESUMEN

The regulation of body fat stores and blood glucose levels is critical for survival. This review highlights growing evidence that leptin action in the central nervous system plays a key role in both processes. Investigation into underlying mechanisms has begun to clarify the physiological role of leptin in the control of glucose metabolism and raises interesting new possibilities for the treatment of diabetes and related disorders.


Asunto(s)
Sistema Nervioso Central/fisiología , Glucosa/metabolismo , Leptina/fisiología , Tejido Adiposo/metabolismo , Adiposidad/fisiología , Animales , Diabetes Mellitus/metabolismo , Homeostasis/fisiología , Humanos , Insulina/fisiología , Quinasas Janus/metabolismo , Red Nerviosa/fisiología , Fenómenos Fisiológicos de la Nutrición , Obesidad/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/fisiología
6.
Am J Physiol Endocrinol Metab ; 315(4): E552-E564, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29944392

RESUMEN

The ability to maintain core temperature within a narrow range despite rapid and dramatic changes in environmental temperature is essential for the survival of free-living mammals, and growing evidence implicates an important role for the hormone leptin. Given that thyroid hormone plays a major role in thermogenesis and that circulating thyroid hormone levels are reduced in leptin-deficient states (an effect partially restored by leptin replacement), we sought to determine the extent to which leptin's role in thermogenesis is mediated by raising thyroid hormone levels. To this end, we 1) quantified the effect of physiological leptin replacement on circulating levels of thyroid hormone in leptin-deficient ob/ob mice, and 2) determined if the effect of leptin to prevent the fall in core temperature in these animals during cold exposure is mimicked by administration of a physiological replacement dose of triiodothyronine (T3). We report that, as with leptin, normalization of circulating T3 levels is sufficient both to increase energy expenditure, respiratory quotient, and ambulatory activity and to reduce torpor in ob/ob mice. Yet, unlike leptin, infusing T3 at a dose that normalizes plasma T3 levels fails to prevent the fall of core temperature during mild cold exposure. Because thermal conductance (e.g., heat loss to the environment) was reduced by administration of leptin but not T3, leptin regulation of heat dissipation is implicated as playing a uniquely important role in thermoregulation. Together, these findings identify a key role in thermoregulation for leptin-mediated suppression of thermal conduction via a mechanism that is independent of the thyroid axis.


Asunto(s)
Regulación de la Temperatura Corporal/genética , Temperatura Corporal , Ingestión de Energía , Metabolismo Energético , Leptina/genética , Locomoción , Conductividad Térmica , Animales , Regulación de la Temperatura Corporal/efectos de los fármacos , Frío , Leptina/farmacología , Masculino , Ratones , Triyodotironina/farmacología
7.
Am J Physiol Regul Integr Comp Physiol ; 313(4): R357-R371, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28747407

RESUMEN

Oxytocin (OT) administration elicits weight loss in diet-induced obese (DIO) rodents, nonhuman primates, and humans by reducing energy intake and increasing energy expenditure. Although the neurocircuitry underlying these effects remains uncertain, OT neurons in the paraventricular nucleus are positioned to control both energy intake and sympathetic nervous system outflow to interscapular brown adipose tissue (BAT) through projections to the hindbrain nucleus of the solitary tract and spinal cord. The current work was undertaken to examine whether central OT increases BAT thermogenesis, whether this effect involves hindbrain OT receptors (OTRs), and whether such effects are associated with sustained weight loss following chronic administration. To assess OT-elicited changes in BAT thermogenesis, we measured the effects of intracerebroventricular administration of OT on interscapular BAT temperature in rats and mice. Because fourth ventricular (4V) infusion targets hindbrain OTRs, whereas third ventricular (3V) administration targets both forebrain and hindbrain OTRs, we compared responses to OT following chronic 3V infusion in DIO rats and mice and chronic 4V infusion in DIO rats. We report that chronic 4V infusion of OT into two distinct rat models recapitulates the effects of 3V OT to ameliorate DIO by reducing fat mass. While reduced food intake contributes to this effect, our finding that 4V OT also increases BAT thermogenesis suggests that increased energy expenditure may contribute as well. Collectively, these findings support the hypothesis that, in DIO rats, OT action in the hindbrain evokes sustained weight loss by reducing energy intake and increasing BAT thermogenesis.


Asunto(s)
Tejido Adiposo Pardo/fisiopatología , Obesidad/tratamiento farmacológico , Obesidad/fisiopatología , Oxitocina/farmacología , Rombencéfalo/fisiopatología , Termogénesis/efectos de los fármacos , Pérdida de Peso/efectos de los fármacos , Tejido Adiposo Pardo/efectos de los fármacos , Animales , Depresores del Apetito/farmacología , Dieta Alta en Grasa/efectos adversos , Relación Dosis-Respuesta a Droga , Infusiones Intraventriculares , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Ratas , Ratas Long-Evans , Ratas Sprague-Dawley , Rombencéfalo/efectos de los fármacos , Especificidad de la Especie , Resultado del Tratamiento
8.
Diabetologia ; 59(5): 928-32, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26969486

RESUMEN

While it is well established that the adiposity hormone leptin plays a key role in the regulation of energy homeostasis, growing evidence suggests that leptin is also critical for glycaemic control. In this review we examine the role of the brain in the glucose-lowering actions of leptin and the potential mediators responsible for driving hyperglycaemia in states of uncontrolled insulin-deficient diabetes (uDM). These considerations highlight the possibility of targeting leptin-sensitive pathways as a therapeutic option for the treatment of diabetes. This review summarises a presentation given at the 'Is leptin coming back?' symposium at the 2015 annual meeting of the EASD. It is accompanied by two other reviews on topics from this symposium (by Christoffer Clemmensen and colleagues, DOI: 10.1007/s00125-016-3906-7 , and by Gerald Shulman and colleagues, DOI: 10.1007/s00125-016-3909-4 ) and an overview by the Session Chair, Ulf Smith (DOI: 10.1007/s00125-016-3894-7 ).


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Leptina/uso terapéutico , Animales , Glucemia/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Corticosterona/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Homeostasis/efectos de los fármacos , Humanos
9.
Am J Physiol Regul Integr Comp Physiol ; 310(7): R640-58, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26791828

RESUMEN

Based largely on a number of short-term administration studies, growing evidence suggests that central oxytocin is important in the regulation of energy balance. The goal of the current work is to determine whether long-term third ventricular (3V) infusion of oxytocin into the central nervous system (CNS) is effective for obesity prevention and/or treatment in rat models. We found that chronic 3V oxytocin infusion between 21 and 26 days by osmotic minipumps both reduced weight gain associated with the progression of high-fat diet (HFD)-induced obesity and elicited a sustained reduction of fat mass with no decrease of lean mass in rats with established diet-induced obesity. We further demonstrated that these chronic oxytocin effects result from 1) maintenance of energy expenditure at preintervention levels despite ongoing weight loss, 2) a reduction in respiratory quotient, consistent with increased fat oxidation, and 3) an enhanced satiety response to cholecystokinin-8 and associated decrease of meal size. These weight-reducing effects persisted for approximately 10 days after termination of 3V oxytocin administration and occurred independently of whether sucrose was added to the HFD. We conclude that long-term 3V administration of oxytocin to rats can both prevent and treat diet-induced obesity.


Asunto(s)
Adiposidad/fisiología , Encéfalo/fisiología , Dieta Alta en Grasa/métodos , Metabolismo de los Lípidos/fisiología , Oxitocina/farmacocinética , Respuesta de Saciedad/fisiología , Animales , Apetito/fisiología , Ansia/fisiología , Grasas de la Dieta/metabolismo , Infusiones Intraventriculares , Masculino , Obesidad/fisiopatología , Obesidad/prevención & control , Oxitocina/administración & dosificación , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología , Pérdida de Peso/fisiología
10.
Am J Physiol Regul Integr Comp Physiol ; 308(5): R431-8, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25540103

RESUMEN

Despite compelling evidence that oxytocin (OT) is effective in reducing body weight (BW) in diet-induced obese (DIO) rodents, studies of the effects of OT in humans and rhesus monkeys have primarily focused on noningestive behaviors. The goal of this study was to translate findings in DIO rodents to a preclinical translational model of DIO. We tested the hypothesis that increased OT signaling would reduce BW in DIO rhesus monkeys by inhibiting food intake and increasing energy expenditure (EE). Male DIO rhesus monkeys from the California National Primate Research Center were adapted to a 12-h fast and maintained on chow and a daily 15% fructose-sweetened beverage. Monkeys received 2× daily subcutaneous vehicle injections over 1 wk. We subsequently identified doses of OT (0.2 and 0.4 mg/kg) that reduced food intake and BW in the absence of nausea or diarrhea. Chronic administration of OT for 4 wk (0.2 mg/kg for 2 wk; 0.4 mg/kg for 2 wk) reduced BW relative to vehicle by 3.3 ± 0.4% (≈0.6 kg; P < 0.05). Moreover, the low dose of OT suppressed 12-h chow intake by 26 ± 7% (P < 0.05). The higher dose of OT reduced 12-h chow intake by 27 ± 5% (P < 0.05) and 8-h fructose-sweetened beverage intake by 18 ± 8% (P < 0.05). OT increased EE during the dark cycle by 14 ± 3% (P < 0.05) and was associated with elevations of free fatty acids and glycerol and reductions in triglycerides suggesting increased lipolysis. Together, these data suggest that OT reduces BW in DIO rhesus monkeys through decreased food intake as well as increased EE and lipolysis.


Asunto(s)
Fármacos Antiobesidad/administración & dosificación , Carbohidratos de la Dieta , Ingestión de Alimentos/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Fructosa , Obesidad/tratamiento farmacológico , Oxitocina/administración & dosificación , Pérdida de Peso/efectos de los fármacos , Animales , Depresores del Apetito/administración & dosificación , Biomarcadores/sangre , Modelos Animales de Enfermedad , Esquema de Medicación , Inyecciones Subcutáneas , Lípidos/sangre , Lipólisis/efectos de los fármacos , Macaca mulatta , Masculino , Obesidad/sangre , Obesidad/fisiopatología , Obesidad/psicología , Factores de Tiempo
11.
Mamm Genome ; 25(11-12): 549-63, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25001233

RESUMEN

Metabolic diseases such as obesity and atherosclerosis result from complex interactions between environmental factors and genetic variants. A panel of chromosome substitution strains (CSSs) was developed to characterize genetic and dietary factors contributing to metabolic diseases and other biological traits and biomedical conditions. Our goal here was to identify quantitative trait loci (QTLs) contributing to obesity, energy expenditure, and atherosclerosis. Parental strains C57BL/6 and A/J together with a panel of 21 CSSs derived from these progenitors were subjected to chronic feeding of rodent chow and atherosclerotic (females) or diabetogenic (males) test diets, and evaluated for a variety of metabolic phenotypes including several traits unique to this report, namely fat pad weights, energy balance, and atherosclerosis. A total of 297 QTLs across 35 traits were discovered, two of which provided significant protection from atherosclerosis, and several dozen QTLs modulated body weight, body composition, and circulating lipid levels in females and males. While several QTLs confirmed previous reports, most QTLs were novel. Finally, we applied the CSS quantitative genetic approach to energy balance, and identified three novel QTLs controlling energy expenditure and one QTL modulating food intake. Overall, we identified many new QTLs and phenotyped several novel traits in this mouse model of diet-induced metabolic diseases.


Asunto(s)
Aterosclerosis/genética , Metabolismo Energético/genética , Obesidad/genética , Animales , Composición Corporal , Peso Corporal , Cromosomas de los Mamíferos/genética , Dieta Alta en Grasa/efectos adversos , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Masculino , Ratones Endogámicos C57BL , Fenotipo , Sitios de Carácter Cuantitativo
12.
Proc Natl Acad Sci U S A ; 108(35): 14670-5, 2011 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-21873226

RESUMEN

Leptin has been shown to reduce hyperglycemia in rodent models of type 1 diabetes. We investigated the effects of leptin administration in University of California, Davis, type 2 diabetes mellitus (UCD-T2DM) rats, which develop adult-onset polygenic obesity and type 2 diabetes. Animals that had been diabetic for 2 mo were treated with s.c. injections of saline (control) or murine leptin (0.5 mg/kg) twice daily for 1 mo. Control rats were pair-fed to leptin-treated animals. Treatment with leptin normalized fasting plasma glucose and was accompanied by lowered HbA1c, plasma glucagon, and triglyceride concentrations and expression of hepatic gluconeogenic enzymes compared with vehicle (P < 0.05), independent of any effects on body weight and food intake. In addition, leptin-treated animals exhibited marked improvement of insulin sensitivity and glucose homeostasis compared with controls, whereas pancreatic insulin content was 50% higher in leptin-treated animals (P < 0.05). These effects coincided with activation of leptin and insulin signaling pathways and down-regulation of the PKR-like endoplasmic reticulum (ER) kinase/eukaryotic translation inhibition factor 2α (PERK-eIF2α) arm of ER stress in liver, skeletal muscle, and adipose tissue as well as increased pro-opiomelanocortin and decreased agouti-related peptide in the hypothalamus. In contrast, several markers of inflammation/immune function were elevated with leptin treatment in the same tissues (P < 0.05), suggesting that the leptin-mediated increase of insulin sensitivity was not attributable to decreased inflammation. Thus, leptin administration improves insulin sensitivity and normalizes fasting plasma glucose in diabetic UCD-T2DM rats, independent of energy intake, via peripheral and possibly centrally mediated actions, in part by decreasing circulating glucagon and ER stress.


Asunto(s)
Glucemia/análisis , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Leptina/administración & dosificación , Animales , Peso Corporal , Corticosterona/sangre , Diabetes Mellitus Tipo 2/sangre , Ingestión de Alimentos , Retículo Endoplásmico/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Glucagón/sangre , Gluconeogénesis , Hemoglobina Glucada/análisis , Inyecciones Subcutáneas , Insulina/sangre , Factor I del Crecimiento Similar a la Insulina/análisis , Janus Quinasa 2/metabolismo , Metabolismo de los Lípidos , Masculino , Ratas , Transducción de Señal , eIF-2 Quinasa/metabolismo
13.
JCI Insight ; 9(6)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38349753

RESUMEN

Glucose homeostasis is achieved via complex interactions between the endocrine pancreas and other peripheral tissues and glucoregulatory neurocircuits in the brain that remain incompletely defined. Within the brain, neurons in the hypothalamus appear to play a particularly important role. Consistent with this notion, we report evidence that (pro)renin receptor (PRR) signaling within a subset of tyrosine hydroxylase (TH) neurons located in the hypothalamic paraventricular nucleus (PVNTH neurons) is a physiological determinant of the defended blood glucose level. Specifically, we demonstrate that PRR deletion from PVNTH neurons restores normal glucose homeostasis in mice with diet-induced obesity (DIO). Conversely, chemogenetic inhibition of PVNTH neurons mimics the deleterious effect of DIO on glucose. Combined with our finding that PRR activation inhibits PVNTH neurons, these findings suggest that, in mice, (a) PVNTH neurons play a physiological role in glucose homeostasis, (b) PRR activation impairs glucose homeostasis by inhibiting these neurons, and (c) this mechanism plays a causal role in obesity-associated metabolic impairment.


Asunto(s)
Glucosa , Receptor de Prorenina , Animales , Ratones , Glucosa/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo , Obesidad/complicaciones , Obesidad/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
14.
Artículo en Inglés | MEDLINE | ID: mdl-39010249

RESUMEN

In April 2023, the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), in partnership with the National Institute of Child Health and Human Development, the National Institute on Aging, and the Office of Behavioral and Social Sciences Research, hosted a 2-day online workshop to discuss neural plasticity in energy homeostasis and obesity. The goal was to provide a broad view of current knowledge while identifying research questions and challenges regarding neural systems that control food intake and energy balance. This review includes highlights from the meeting and is intended both to introduce unfamiliar audiences with concepts central to energy homeostasis, feeding, and obesity and to highlight up-and-coming research in these areas that may be of special interest to those with a background in these fields. The overarching theme of this review addresses plasticity within the central and peripheral nervous systems that regulates and influences eating, emphasizing distinctions between healthy and disease states. This is by no means a comprehensive review because this is a broad and rapidly developing area. However, we have pointed out relevant reviews and primary articles throughout, as well as gaps in current understanding and opportunities for developments in the field.

15.
Sci Rep ; 14(1): 11839, 2024 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782973

RESUMEN

The intestinal extracellular matrix (ECM) helps maintain appropriate tissue barrier function and regulate host-microbial interactions. Chondroitin sulfate- and dermatan sulfate-glycosaminoglycans (CS/DS-GAGs) are integral components of the intestinal ECM, and alterations in CS/DS-GAGs have been shown to significantly influence biological functions. Although pathologic ECM remodeling is implicated in inflammatory bowel disease (IBD), it is unknown whether changes in the intestinal CS/DS-GAG composition are also linked to IBD in humans. Our aim was to characterize changes in the intestinal ECM CS/DS-GAG composition in intestinal biopsy samples from patients with IBD using mass spectrometry. We characterized intestinal CS/DS-GAGs in 69 pediatric and young adult patients (n = 13 control, n = 32 active IBD, n = 24 IBD in remission) and 6 adult patients. Here, we report that patients with active IBD exhibit a significant decrease in the relative abundance of CS/DS isomers associated with matrix stability (CS-A and DS) compared to controls, while isomers implicated in matrix instability and inflammation (CS-C and CS-E) were significantly increased. This imbalance of intestinal CS/DS isomers was restored among patients in clinical remission. Moreover, the abundance of pro-stabilizing CS/DS isomers negatively correlated with clinical disease activity scores, whereas both pro-inflammatory CS-C and CS-E content positively correlated with disease activity scores. Thus, pediatric patients with active IBD exhibited increased pro-inflammatory and decreased pro-stabilizing CS/DS isomer composition, and future studies are needed to determine whether changes in the CS/DS-GAG composition play a pathogenic role in IBD.


Asunto(s)
Sulfatos de Condroitina , Glicosaminoglicanos , Enfermedades Inflamatorias del Intestino , Humanos , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Sulfatos de Condroitina/metabolismo , Masculino , Femenino , Adulto , Adolescente , Niño , Glicosaminoglicanos/metabolismo , Adulto Joven , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Matriz Extracelular/metabolismo , Intestinos/patología
16.
Am J Physiol Endocrinol Metab ; 304(7): E734-46, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23384771

RESUMEN

Recent advances in human brown adipose tissue (BAT) imaging technology have renewed interest in the identification of BAT activators for the treatment of obesity and diabetes. In uncontrolled diabetes (uDM), activation of BAT is implicated in glucose lowering mediated by intracerebroventricular (icv) administration of leptin, which normalizes blood glucose levels in streptozotocin (STZ)-induced diabetic rats. The potent effect of icv leptin to increase BAT glucose uptake in STZ-diabetes is accompanied by the return of reduced plasma thyroxine (T4) levels and BAT uncoupling protein-1 (Ucp1) mRNA levels to nondiabetic controls. We therefore sought to determine whether activation of thyroid hormone receptors is sufficient in and of itself to lower blood glucose levels in STZ-diabetes and whether this effect involves activation of BAT. We found that, although systemic administration of the thyroid hormone (TR)ß-selective agonist GC-1 increases energy expenditure and induces further weight loss in STZ-diabetic rats, it neither increased BAT glucose uptake nor attenuated diabetic hyperglycemia. Even when GC-1 was administered in combination with a ß(3)-adrenergic receptor agonist to mimic sympathetic nervous system activation, glucose uptake was not increased in STZ-diabetic rats, nor was blood glucose lowered, yet this intervention potently activated BAT. Similar results were observed in animals treated with active thyroid hormone (T3) instead of GC-1. Taken together, our data suggest that neither returning normal plasma thyroid hormone levels nor BAT activation has any impact on diabetic hyperglycemia, and that in BAT, increases of Ucp1 gene expression and glucose uptake are readily dissociated from one another in this setting.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Diabetes Mellitus Experimental/metabolismo , Glucosa/metabolismo , Hiperglucemia/metabolismo , Sistema Nervioso Simpático/metabolismo , Termogénesis/fisiología , Receptores beta de Hormona Tiroidea/metabolismo , Acetatos/farmacología , Tejido Adiposo Pardo/efectos de los fármacos , Agonistas de Receptores Adrenérgicos beta 3/farmacología , Animales , Composición Corporal/efectos de los fármacos , Diabetes Mellitus Experimental/complicaciones , Ingestión de Alimentos/efectos de los fármacos , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/etiología , Canales Iónicos/efectos de los fármacos , Canales Iónicos/metabolismo , Masculino , Proteínas Mitocondriales/efectos de los fármacos , Proteínas Mitocondriales/metabolismo , Fenoles/farmacología , Ratas , Ratas Wistar , Receptores Adrenérgicos beta 3/metabolismo , Estreptozocina , Sistema Nervioso Simpático/efectos de los fármacos , Termogénesis/efectos de los fármacos , Receptores beta de Hormona Tiroidea/agonistas , Triyodotironina/farmacología , Proteína Desacopladora 1
17.
Hepatology ; 55(4): 1103-11, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21994008

RESUMEN

UNLABELLED: Childhood obesity is associated with type 2 diabetes mellitus and nonalcoholic fatty liver disease (NAFLD). Recent studies have found associations between vitamin D deficiency (VDD), insulin resistance (IR), and NAFLD among overweight children. To further explore mechanisms mediating these effects, we fed young (age 25 days) Sprague-Dawley rats with a low-fat diet (LFD) alone or with vitamin D depletion (LFD+VDD). A second group of rats was exposed to a Westernized diet (WD: high-fat/high-fructose corn syrup) that is more typically consumed by overweight children, and was either replete (WD) or deficient in vitamin D (WD+VDD). Liver histology was assessed using the nonalcoholic steatohepatitis (NASH) Clinical Research Network (CRN) scoring system and expression of genes involved in inflammatory pathways were measured in liver and visceral adipose tissue after 10 weeks. In VDD groups, 25-OH-vitamin D levels were reduced to 29% (95% confidence interval [CI]: 23%-36%) compared to controls. WD+VDD animals exhibited significantly greater hepatic steatosis compared to LFD groups. Lobular inflammation as well as NAFLD Activity Score (NAS) were higher in WD+VDD versus the WD group (NAS: WD+VDD 3.2 ± 0.47 versus WD 1.50 ± 0.48, P < 0.05). Hepatic messenger RNA (mRNA) levels of Toll-like receptors (TLR)2, TLR4, and TLR9, as well as resistin, interleukins (IL)-1ß, IL-4, and IL-6 and oxidative stress marker heme oxygenase (HO)-1, were higher in WD+VDD versus WD animals (P < 0.05). Logistic regression analyses showed significant associations between NAS score and liver mRNA levels of TLRs 2, 4, and 9, endotoxin receptor CD14, as well as peroxisome proliferator activated receptor (PPAR)γ, and HO-1. CONCLUSION: VDD exacerbates NAFLD through TLR-activation, possibly by way of endotoxin exposure in a WD rat model. In addition it causes IR, higher hepatic resistin gene expression, and up-regulation of hepatic inflammatory and oxidative stress genes.


Asunto(s)
Hígado Graso/epidemiología , Hígado Graso/fisiopatología , Hígado/metabolismo , Obesidad/epidemiología , Resistina/metabolismo , Receptores Toll-Like/metabolismo , Deficiencia de Vitamina D/epidemiología , Animales , Comorbilidad , Carbohidratos de la Dieta/efectos adversos , Grasas de la Dieta/efectos adversos , Modelos Animales de Enfermedad , Hígado Graso/metabolismo , Resistencia a la Insulina/fisiología , Hígado/patología , Masculino , Enfermedad del Hígado Graso no Alcohólico , Obesidad/etiología , Obesidad/fisiopatología , Estrés Oxidativo/fisiología , Ratas , Ratas Sprague-Dawley , Índice de Severidad de la Enfermedad , Deficiencia de Vitamina D/fisiopatología
18.
Endocrinology ; 164(7)2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37279930

RESUMEN

When mammals are exposed to a warm environment, overheating is prevented by activation of "warm-responsive" neurons (WRNs) in the hypothalamic preoptic area (POA) that reduce thermogenesis while promoting heat dissipation. Heat exposure also impairs glucose tolerance, but whether this also results from activation of POA WRNs is unknown. To address this question, we sought in the current work to determine if glucose intolerance induced by heat exposure can be attributed to activation of a specific subset of WRNs that express pituitary adenylate cyclase-activating peptide (ie, POAPacap neurons). We report that when mice are exposed to an ambient temperature sufficiently warm to activate POAPacap neurons, the expected reduction of energy expenditure is associated with glucose intolerance, and that these responses are recapitulated by chemogenetic POAPacap neuron activation. Because heat-induced glucose intolerance was not blocked by chemogenetic inhibition of POAPacap neurons, we conclude that POAPacap neuron activation is sufficient, but not required, to explain the impairment of glucose tolerance elicited by heat exposure.


Asunto(s)
Hipotálamo , Área Preóptica , Ratones , Masculino , Animales , Área Preóptica/fisiología , Homeostasis , Hipotálamo/fisiología , Regulación de la Temperatura Corporal/fisiología , Neuronas/fisiología , Glucosa , Mamíferos
19.
World J Gastroenterol ; 29(33): 4991-5004, 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37731997

RESUMEN

BACKGROUND: The increased prevalence of inflammatory bowel disease (IBD) among patients with obesity and type 2 diabetes suggests a causal link between these diseases, potentially involving the effect of hyperglycemia to disrupt intestinal barrier integrity. AIM: To investigate whether the deleterious impact of diabetes on the intestinal barrier is associated with increased IBD severity in a murine model of colitis in mice with and without diet-induced obesity. METHODS: Mice were fed chow or a high-fat diet and subsequently received streptozotocin to induce diabetic-range hyperglycemia. Six weeks later, dextran sodium sulfate was given to induce colitis. In select experiments, a subset of diabetic mice was treated with the antidiabetic drug dapagliflozin prior to colitis onset. Endpoints included both clinical and histological measures of colitis activity as well as histochemical markers of colonic epithelial barrier integrity. RESULTS: In mice given a high-fat diet, but not chow-fed animals, diabetes was associated with significantly increased clinical colitis activity and histopathologic markers of disease severity. Diabetes was also associated with a decrease in key components that regulate colonic epithelial barrier integrity (colonic mucin layer content and epithelial tight junction proteins) in diet-induced obese mice. Each of these effects of diabetes in diet-induced obese mice was ameliorated by restoring normoglycemia. CONCLUSION: In obese mice, diabetes worsened clinical and pathologic outcomes of colitis via mechanisms that are reversible with treatment of hyperglycemia. Hyperglycemia-induced intestinal barrier dysfunction offers a plausible mechanism linking diabetes to increased colitis severity. These findings suggest that effective diabetes management may decrease the clinical severity of IBD.


Asunto(s)
Colitis , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hiperglucemia , Enfermedades Inflamatorias del Intestino , Humanos , Animales , Ratones , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Experimental/complicaciones , Ratones Obesos , Obesidad/complicaciones , Dieta Alta en Grasa/efectos adversos
20.
Diabetes ; 72(9): 1207-1213, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37347793

RESUMEN

To investigate whether glucoregulatory neurons in the hypothalamus can sense and respond to physiological variation in the blood glucose (BG) level, we combined continuous arterial glucose monitoring with continuous measures of the activity of a specific subset of neurons located in the hypothalamic ventromedial nucleus that express pituitary adenylate cyclase activating peptide (VMNPACAP neurons) obtained using fiber photometry. Data were collected in conscious, free-living mice during a 1-h baseline monitoring period and a subsequent 2-h intervention period during which the BG level was raised either by consuming a chow or a high-sucrose meal or by intraperitoneal glucose injection. Cross-correlation analysis revealed that, following a 60- to 90-s delay, interventions that raise the BG level reliably associate with reduced VMNPACAP neuron activity (P < 0.01). In addition, a strong positive correlation between BG and spontaneous VMNPACAP neuron activity was observed under basal conditions but with a much longer (∼25 min) temporal offset, consistent with published evidence that VMNPACAP neuron activation raises the BG level. Together, these findings are suggestive of a closed-loop system whereby VMNPACAP neuron activation increases the BG level; detection of a rising BG level, in turn, feeds back to inhibit these neurons. To our knowledge, these findings constitute the first evidence of a role in glucose homeostasis for glucoregulatory neurocircuits that, like pancreatic ß-cells, sense and respond to physiological variation in glycemia. ARTICLE HIGHLIGHTS: By combining continuous arterial glucose monitoring with fiber photometry, studies investigated whether neurons in the murine ventromedial nucleus that express pituitary adenylate cyclase activating peptide (VMNPACAP neurons) detect and respond to changes in glycemia in vivo. VMNPACAP neuron activity rapidly decreases (within <2 min) when the blood glucose level is raised by either food consumption or glucose administration. Spontaneous VMNPACAP neuron activity also correlates positively with glycemia, but with a longer temporal offset, consistent with reports that hyperglycemia is induced by experimental activation of these neurons. Like pancreatic ß-cells, neurons in the hypothalamic ventromedial nucleus appear to sense and respond to physiological variation in glycemia.


Asunto(s)
Automonitorización de la Glucosa Sanguínea , Glucemia , Ratones , Animales , Glucemia/análisis , Adenilil Ciclasas , Hipotálamo , Glucosa , Neuronas/fisiología , Péptidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA