Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Arterioscler Thromb Vasc Biol ; 44(2): 452-464, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38126173

RESUMEN

BACKGROUND: Aortic valve sclerosis (AVSc) presents similar pathogenetic mechanisms to coronary artery disease and is associated with short- and long-term mortality in patients with coronary artery disease. Evidence of AVSc-specific pathophysiological traits in acute myocardial infarction (AMI) is currently lacking. Thus, we aimed to identify a blood-based transcriptional signature that could differentiate AVSc from no-AVSc patients during AMI. METHODS: Whole-blood transcriptome of AVSc (n=44) and no-AVSc (n=66) patients with AMI was assessed by RNA sequencing on hospital admission. Feature selection, differential expression, and enrichment analyses were performed to identify gene expression patterns discriminating AVSc from no-AVSc and infer functional associations. Multivariable Cox regression analysis was used to estimate the hazard ratios of cardiovascular events in AVSc versus no-AVSc patients. RESULTS: This cross-sectional study identified a panel of 100 informative genes capable of distinguishing AVSc from no-AVSc patients with 94% accuracy. Further analysis revealed significant mean differences in 143 genes, of which 30 genes withstood correction for age and previous AMI or coronary interventions. Functional inference unveiled a significant association between AVSc and key biological processes, including acute inflammatory responses, type I IFN (interferon) response, platelet activation, and hemostasis. Notably, patients with AMI with AVSc exhibited a significantly higher incidence of adverse cardiovascular events during a 10-year follow-up period, with a full adjusted hazard ratio of 2.4 (95% CI, 1.3-4.5). CONCLUSIONS: Our findings shed light on the molecular mechanisms underlying AVSc and provide potential prognostic insights for patients with AMI with AVSc. During AMI, patients with AVSc showed increased type I IFN (interferon) response and earlier adverse cardiovascular outcomes. Novel pharmacological therapies aiming at limiting type I IFN response during or immediately after AMI might improve poor cardiovascular outcomes of patients with AMI with AVSc.


Asunto(s)
Enfermedad de la Arteria Coronaria , Infarto del Miocardio , Humanos , Enfermedad de la Arteria Coronaria/patología , Válvula Aórtica/patología , Transcriptoma , Esclerosis/patología , Estudios Transversales , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/genética , Infarto del Miocardio/epidemiología , Inmunidad , Interferones
2.
Cardiovasc Diabetol ; 22(1): 23, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36721184

RESUMEN

BACKGROUND: Epicardial adipose tissue (EAT) plays an important role in cardiometabolic risk. EAT is a modifiable risk factor and could be a potential therapeutic target for drugs that already show cardiovascular benefits. The aim of this study is to evaluate the effect of cardiometabolic drugs on EAT reduction. METHODS: A detailed search related to the effect on EAT reduction due to cardiometabolic drugs, such as glucagon-like peptide-1 receptor agonist (GLP-1 RA), sodium-glucose cotransporter-2 inhibitors (SGLT2-i), and statins was conducted according to PRISMA guidelines. Eighteen studies enrolling 1064 patients were included in the qualitative and quantitative analyses. RESULTS: All three analyzed drug classes, in particular GLP-1 RA, show a significant effect on EAT reduction (GLP-1 RA standardize mean difference (SMD) = - 1.005; p < 0.001; SGLT2-i SMD = - 0.552; p < 0.001, and statin SMD = - 0.195; p < 0.001). The sensitivity analysis showed that cardiometabolic drugs strongly benefit EAT thickness reduction, measured by ultrasound (overall SMD of - 0.663; 95%CI - 0.79, - 0.52; p < 0.001). Meta-regression analysis revealed younger age and higher BMI as significant effect modifiers of the association between cardiometabolic drugs and EAT reduction for both composite effect and effect on EAT thickness, (age Z: 3.99; p < 0.001 and Z: 1.97; p = 0.001, respectively; BMI Z: - 4.40; p < 0.001 and Z: - 2.85; p = 0.004, respectively). CONCLUSIONS: Cardiometabolic drugs show a significant beneficial effect on EAT reduction. GLP-1 RA was more effective than SGLT2-i, while statins had a rather mild effect. We believe that the most effective treatment with these drugs should target younger patients with high BMI.


Asunto(s)
Enfermedades Cardiovasculares , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/prevención & control , Péptido 1 Similar al Glucagón , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Obesidad , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico
3.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36769209

RESUMEN

In heart failure, the biological and clinical connection between abnormal iron homeostasis, myocardial function, and prognosis is known; however, the expression profiles of iron-linked genes both at myocardial tissue and single-cell level are not well defined. Through publicly available bulk and single-nucleus RNA sequencing (RNA-seq) datasets of left ventricle samples from adult non-failed (NF) and dilated cardiomyopathy (DCM) subjects, we aim to evaluate the altered iron metabolism in a diseased condition, at the whole cardiac tissue and single-cell level. From the bulk RNA-seq data, we found 223 iron-linked genes expressed at the myocardial tissue level and 44 differentially expressed between DCM and NF subjects. At the single-cell level, at least 18 iron-linked expressed genes were significantly regulated in DCM when compared to NF subjects. Specifically, the iron metabolism in DCM cardiomyocytes is altered at several levels, including: (1) imbalance of Fe3+ internalization (SCARA5 down-regulation) and reduction of internal conversion from Fe3+ to Fe2+ (STEAP3 down-regulation), (2) increase of iron consumption to produce hemoglobin (HBA1/2 up-regulation), (3) higher heme synthesis and externalization (ALAS2 and ABCG2 up-regulation), (4) lower cleavage of heme to Fe2+, biliverdin and carbon monoxide (HMOX2 down-regulation), and (5) positive regulation of hepcidin (BMP6 up-regulation).


Asunto(s)
Cardiomiopatía Dilatada , Insuficiencia Cardíaca , Adulto , Humanos , Cardiomiopatía Dilatada/metabolismo , Miocardio/metabolismo , Regulación hacia Abajo , Miocitos Cardíacos/metabolismo , Insuficiencia Cardíaca/metabolismo , 5-Aminolevulinato Sintetasa/genética , Receptores Depuradores de Clase A/genética
4.
Int J Mol Sci ; 23(17)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36077136

RESUMEN

Atherosclerosis is a common cause of cardiovascular disease, which, in turn, is often fatal. Today, we know a lot about the pathogenesis of atherosclerosis. However, the main knowledge is that the disease is extremely complicated. The development of atherosclerosis is associated with more than one molecular mechanism, each making a significant contribution. These mechanisms include endothelial dysfunction, inflammation, mitochondrial dysfunction, oxidative stress, and lipid metabolism disorders. This complexity inevitably leads to difficulties in treatment and prevention. One of the possible therapeutic options for atherosclerosis and its consequences may be metformin, which has already proven itself in the treatment of diabetes. Both diabetes and atherosclerosis are complex metabolic diseases, the pathogenesis of which involves many different mechanisms, including those common to both diseases. This makes metformin a suitable candidate for investigating its efficacy in cardiovascular disease. In this review, we highlight aspects such as the mechanisms of action and targets of metformin, in addition to summarizing the available data from clinical trials on the effective reduction of cardiovascular risks.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Diabetes Mellitus , Metformina , Aterosclerosis/metabolismo , Enfermedades Cardiovasculares/complicaciones , Enfermedades Cardiovasculares/etiología , Diabetes Mellitus/tratamiento farmacológico , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Metformina/farmacología , Metformina/uso terapéutico , Estrés Oxidativo
5.
Int J Mol Sci ; 22(4)2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33672625

RESUMEN

Mitral valve prolapse (MVP) associated with severe mitral regurgitation is a debilitating disease with no pharmacological therapies available. MicroRNAs (miRNA) represent an emerging class of circulating biomarkers that have never been evaluated in MVP human plasma. Our aim was to identify a possible miRNA signature that is able to discriminate MVP patients from healthy subjects (CTRL) and to shed light on the putative altered molecular pathways in MVP. We evaluated a plasma miRNA profile using Human MicroRNA Card A followed by real-time PCR validations. In addition, to assess the discriminative power of selected miRNAs, we implemented a machine learning analysis. MiRNA profiling and validations revealed that miR-140-3p, 150-5p, 210-3p, 451a, and 487a-3p were significantly upregulated in MVP, while miR-223-3p, 323a-3p, 340-5p, and 361-5p were significantly downregulated in MVP compared to CTRL (p ≤ 0.01). Functional analysis identified several biological processes possible linked to MVP. In addition, machine learning analysis correctly classified MVP patients from CTRL with high accuracy (0.93) and an area under the receiving operator characteristic curve (AUC) of 0.97. To the best of our knowledge, this is the first study performed on human plasma, showing a strong association between miRNAs and MVP. Thus, a circulating molecular signature could be used as a first-line, fast, and cheap screening tool for MVP identification.


Asunto(s)
MicroARN Circulante/sangre , Insuficiencia de la Válvula Mitral/sangre , Insuficiencia de la Válvula Mitral/complicaciones , Prolapso de la Válvula Mitral/sangre , Prolapso de la Válvula Mitral/complicaciones , Estudios de Casos y Controles , Regulación hacia Abajo/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Insuficiencia de la Válvula Mitral/genética , Prolapso de la Válvula Mitral/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Regulación hacia Arriba/genética
6.
Int J Mol Sci ; 22(12)2021 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-34204756

RESUMEN

Transcript sequencing is a crucial tool for gaining a deep understanding of biological processes in diagnostic and clinical medicine. Given their potential to study novel complex eukaryotic transcriptomes, long-read sequencing technologies are able to overcome some limitations of short-read RNA-Seq approaches. Oxford Nanopore Technologies (ONT) offers the ability to generate long-read sequencing data in real time via portable protein nanopore USB devices. This work aimed to provide the user with the number of reads that should be sequenced, through the ONT MinION platform, to reach the desired accuracy level for a human cell RNA study. We sequenced three cDNA libraries prepared from poly-adenosine RNA of human primary cardiac fibroblasts. Since the runs were comparable, they were combined in a total dataset of 48 million reads. Synthetic datasets with different sizes were generated starting from the total and analyzed in terms of the number of identified genes and their expression levels. As expected, an improved sensitivity was obtained, increasing the sequencing depth, particularly for the non-coding genes. The reliability of expression levels was assayed by (i) comparison with PCR quantifications of selected genes and (ii) by the implementation of a user-friendly multiplexing method in a single run.


Asunto(s)
Secuenciación de Nanoporos , Células Cultivadas , Regulación de la Expresión Génica , Humanos , Sistemas de Lectura Abierta/genética , RNA-Seq
7.
Int J Mol Sci ; 22(16)2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34445099

RESUMEN

Diabetes mellitus (DM) is one of the most common and costly disorders that affect humans around the world. Recently, clinicians and scientists have focused their studies on the effects of glycemic variability (GV), which is especially associated with cardiovascular diseases. In healthy subjects, glycemia is a very stable parameter, while in poorly controlled DM patients, it oscillates greatly throughout the day and between days. Clinically, GV could be measured by different parameters, but there are no guidelines on standardized assessment. Nonetheless, DM patients with high GV experience worse cardiovascular disease outcomes. In vitro and in vivo studies showed that high GV causes several detrimental effects, such as increased oxidative stress, inflammation, and apoptosis linked to endothelial dysfunction. However, the evidence that treating GV is beneficial is still scanty. Clinical trials aiming to improve the diagnostic and prognostic accuracy of GV measurements correlated with cardiovascular outcomes are needed. The present review aims to evaluate the clinical link between high GV and cardiovascular diseases, taking into account the underlined biological mechanisms. A clear view of this challenge may be useful to standardize the clinical evaluation and to better identify treatments and strategies to counteract this DM aspect.


Asunto(s)
Enfermedades Cardiovasculares/etiología , Complicaciones de la Diabetes/complicaciones , Hiperglucemia/complicaciones , Animales , Glucemia/metabolismo , Enfermedades Cardiovasculares/metabolismo , Complicaciones de la Diabetes/metabolismo , Diabetes Mellitus/metabolismo , Humanos , Hiperglucemia/metabolismo , Estrés Oxidativo
8.
Pharmacol Res ; 158: 104888, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32434054

RESUMEN

Aortic valve stenosis (AS) is a pathological condition that affects about 3% of the population, representing the most common valve disease. The main clinical feature of AS is represented by the impaired leaflet motility, due to calcification, which leads to the left ventricular outflow tract obstruction during systole. The formation and accumulation of calcium nodules are driven by valve interstitial cells (VICs). Unfortunately, to date, the in vitro and in vivo studies were not sufficient to fully recapitulate all the pathological pathways involved in AS development, as well as to define a specific and effective pharmacological treatment for AS patients. Cyclophilin A (CyPA), the most important immunophilin and endogenous ligand of cyclosporine A (CsA), is strongly involved in several detrimental cardiovascular processes, such as calcification. To date, there are no data on the CyPA role in VIC-mediated calcification process of AS. Here, we aimed to identify the role of CyPA in AS by studying VIC calcification, in vitro. In this study, we found that (i) CyPA is up-regulated in stenotic valves of AS patients, (ii) pro-calcifying medium promotes CyPA secretion by VICs, (iii) in vitro treatment of VICs with exogenous CyPA strongly stimulates calcium deposition, and (iv) exogenous CyPA inhibition mediated by CsA analogue MM284 abolished in vitro calcium potential. Thus, CyPA represents a biological target that may act as a novel candidate in the detrimental AS development and its inhibition may provide a novel pharmacological approach for AS treatment.


Asunto(s)
Estenosis de la Válvula Aórtica/tratamiento farmacológico , Estenosis de la Válvula Aórtica/cirugía , Válvula Aórtica/patología , Calcinosis/tratamiento farmacológico , Calcinosis/cirugía , Ciclofilina A/antagonistas & inhibidores , Ciclosporinas/farmacología , Ciclosporinas/uso terapéutico , Anciano , Anciano de 80 o más Años , Válvula Aórtica/metabolismo , Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/metabolismo , Calcinosis/metabolismo , Células Cultivadas , Ciclofilina A/metabolismo , Femenino , Humanos , Masculino , Resultado del Tratamiento
9.
Int J Mol Sci ; 21(16)2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32781508

RESUMEN

Calcific aortic valve disease (CAVD) is the most common valvular heart disease in developed countries predominantly affecting the elderly population therefore posing a large economic burden. It is a gradually progressive condition ranging from mild valve calcification and thickening, without the hemodynamic obstruction, to severe calcification impairing leaflet motion, known as aortic stenosis (AS). The progression of CAVD occurs over many years, and it is extremely variable among individuals. It is also associated with an increased risk of coronary events and mortality. The recent insights into the CAVD pathophysiology included an important role of sex. Accumulating evidence suggests that, in patients with CAVD, sex can determine important differences in the relationship between valvular calcification process, fibrosis, and aortic stenosis hemodynamic severity between men and women. Consequently, it has implications on the development of different valvular phenotypes, left ventricular hypertrophy, and cardiovascular outcomes in men and women. Along these lines, taking into account the sex-related differences in diagnosis, prognosis, and treatment outcomes is of profound importance. In this review, the sex-related differences in patients with CAVD, in terms of pathobiology, clinical phenotypes, and outcomes were discussed.


Asunto(s)
Estenosis de la Válvula Aórtica/epidemiología , Válvula Aórtica/patología , Calcinosis/epidemiología , Caracteres Sexuales , Animales , Estenosis de la Válvula Aórtica/patología , Calcinosis/patología , Femenino , Humanos , Hipertrofia Ventricular Izquierda/patología , Masculino , Fenotipo , Transducción de Señal , Resultado del Tratamiento
10.
J Mol Cell Cardiol ; 131: 146-154, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31026425

RESUMEN

AIMS: Calcific aortic valve stenosis (CAVS) is the most frequent manifestation of aortic valve disease and the third leading cause of cardiovascular disease in the Western countries associated with significant morbidity and mortality. An active biological progression involving inflammation and oxidation leading to valve endothelial damage is considered a hallmark of the early stages of valve degeneration. However, tricuspid (TAV) and bicuspid (BAV) aortic valve deterioration are considered to differ only by shear stress. We hypothesized that endothelial cells (EC) derived from BAV and TAV patients have different miRNA expression patterns and thus distinct pathways could lead to endothelial damage in BAV than TAV patients. METHODS AND RESULTS: We isolated ECs from patients with bicuspid or tricuspid aortic valve, which underwent surgery due to CAVS. MiRNA expression profile by PCR revealed eight upregulated miRNAs between BAV and TAV ECs. Functional analysis identified that BAV ECs presented altered cellular response to oxidative stress and DNA damage stimulus via p53 and alteration in the intrinsic apoptotic signaling pathway. GPX3 and SRXN1 mRNA were express at lower levels in BAV compared to TAV ECs, leading to an increment of DNA double-strand breaks. BAV ECs had a sustained apoptosis activation when compared to TAV ECs. This difference was exacerbated by oxidative stress stimulus leading to a reduced survival rate but completely reverted by miR-328-3p inhibition. CONCLUSION: The present data showed molecular differences in oxidative stress susceptibility, DNA damage magnitude, and apoptosis induction between ECs derived from BAV and TAV patients.


Asunto(s)
Válvula Aórtica/anomalías , MicroARNs/metabolismo , Válvula Tricúspide/citología , Anciano , Válvula Aórtica/citología , Enfermedad de la Válvula Aórtica Bicúspide , Western Blotting , Células Cultivadas , Células Endoteliales/citología , Células Endoteliales/metabolismo , Citometría de Flujo , Enfermedades de las Válvulas Cardíacas , Humanos , Persona de Mediana Edad , Estrés Oxidativo/genética , Estrés Oxidativo/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa
11.
Int J Mol Sci ; 20(10)2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31096574

RESUMEN

Arrhythmogenic cardiomyopathy (ACM) is a genetic disorder characterized by the progressive substitution of functional myocardium with noncontractile fibro-fatty tissue contributing to ventricular arrhythmias and sudden cardiac death. Cyclophilin A (CyPA) is a ubiquitous protein involved in several pathological mechanisms, which also characterize ACM (i.e., fibrosis, inflammation, and adipogenesis). Nevertheless, the involvement of CyPA in ACM cardiac remodeling has not been investigated yet. Thus, we first evaluated CyPA expression levels in the right ventricle (RV) tissue specimens obtained from ACM patients and healthy controls (HC) by immunohistochemistry. Then, we took advantage of ACM- and HC-derived cardiac mesenchymal stromal cells (C-MSC) to assess CyPA modulation during adipogenic differentiation. Interestingly, CyPA was more expressed in the RV sections obtained from ACM vs. HC subjects and positively correlated with the adipose replacement extent. Moreover, CyPA was upregulated at early stages of C-MSC adipogenic differentiation and was secreted at higher level over time in ACM- derived C-MSC. Our study provides novel ex vivo and in vitro information on CyPA expression in ACM remodeling paving the way for future C-MSC-based mechanistic and therapeutic investigations.


Asunto(s)
Arritmias Cardíacas/metabolismo , Cardiomiopatías/metabolismo , Ciclofilina A/metabolismo , Remodelación Ventricular , Adipogénesis/fisiología , Tejido Adiposo/patología , Arritmias Cardíacas/patología , Cardiomiopatías/patología , Diferenciación Celular , Ciclofilina A/genética , Muerte Súbita Cardíaca/patología , Fibrosis , Expresión Génica , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Humanos , Inflamación , Células Madre Mesenquimatosas/patología , Miocardio
12.
Pharmacol Res ; 136: 74-82, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30149054

RESUMEN

Calcific aortic valve disease (CAVD) is the most common valvular disorder in the elderly, with the incidence of 3% in general population of Western countries. The initial phase of CAVD is characterized by leaflet thickening and possible spotty calcification (i.e. aortic valve sclerosis (AVSc)), while advanced stages have leaflets structure degeneration (i.e. aortic valve stenosis (AS)). The pathological cellular and molecular mechanisms, involved in CAVD, are extracellular matrix degradation, aberrant matrix deposition, fibrosis, mineralization, inflammation, lipid accumulation, and neo-angiogenesis. CAVD clinical risk shares considerable overlap with those of atherosclerosis and they include hypertension, smoking habits, and hyperlipidemia. Unfortunately, surgical aortic valve replacement and transcatheter aortic valve implantation are the only available treatments when the disease become severe and symptoms occur. Indeed, no approved pharmacological approach is available for CAVD patients. In this review, we describe the current literature evidence on possible future therapeutic targets for this debilitating and fatal disease such as PCSK9, P2Y2 receptor, cadherin 11, and DDP-4.


Asunto(s)
Válvula Aórtica/patología , Calcinosis/tratamiento farmacológico , Enfermedades de las Válvulas Cardíacas/tratamiento farmacológico , Animales , Calcinosis/metabolismo , Calcinosis/prevención & control , Genómica , Enfermedades de las Válvulas Cardíacas/metabolismo , Enfermedades de las Válvulas Cardíacas/prevención & control , Humanos , Hipolipemiantes/uso terapéutico
13.
RNA Biol ; 15(10): 1268-1272, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30252594

RESUMEN

Circulating microRNAs (miRNAs) are considered as reliable candidates for biomarker discovery. RNA-Sequencing has become the most suitable technique to accurately quantify the miRNAome. However, RNA-Sequencing relies on several technical passages before reaching the final-end. HTG EdgeSeq technology, thanks to the abrogation of RNA extraction step, allows productivity enhancement by reducing the number of hands-on steps, the time for sample preparation and, therefore, the costs. We found a strong correlation between qPCR and dPCR with HTG (Pearson's coefficient of 0.93 and 0.94, respectively). In conclusion, we showed that HTG EdgeSeq, performed on human plasma specimens without RNA extraction, is reliable, allows the simultaneous screening of more than 2,000 miRNAs, and thus, it could be applied to biomarker discovery in large cohorts.


Asunto(s)
Biomarcadores/sangre , MicroARN Circulante/sangre , MicroARNs/sangre , Análisis de Secuencia de ARN , MicroARN Circulante/genética , Humanos , MicroARNs/genética
14.
Eur J Prev Cardiol ; 2024 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-38365224

RESUMEN

BACKGROUND: Patients with acute myocardial infarction (AMI) are at increased risk of recurrent cardiovascular events. Non-stenotic aortic valve fibro-calcific remodeling (AVSc), reflecting systemic damage, may serve as a new marker of risk. OBJECTIVES: To stratify subgroups of AMI patients with specific probabilities of recurrent AMI and to evaluate the importance of AVSc in this setting. METHODS: Consecutive AMI patients (n = 2530) were admitted at Centro Cardiologico Monzino (2010-2019) and followed up for 5 years. Patients were divided into study (n = 1070) and test (n = 966) cohorts. Topological data analysis (TDA) was used to stratify patient subgroups, while Kaplan-Meier and Cox regressions analyses were used to evaluate the significance of baseline characteristics. RESULTS: TDA identified 11 subgroups of AMI patients with specific baseline characteristics. Two subgroups showed the highest rate of reinfarction after 5 years from the indexed AMI with a combined hazard ratio (HR) of 3.8 (95%CI: 2.7-5.4) compared to the other subgroups. This was confirmed in the test cohort (HR = 3.1; 95%CI: 2.2-4.3). These two subgroups were mostly men, with hypertension and dyslipidemia, who exhibit higher prevalence of AVSc, higher levels of high-sensitive c-reactive protein and creatinine. In the year-by-year analysis, AVSc, adjusted for all confounders, showed an independent association with the increased risk of reinfarction (odds ratio of ∼2 at all time-points), in both the study and the test cohorts (all p < 0.01). CONCLUSIONS: AVSc is a crucial variable for identifying AMI patients at high risk of recurrent AMI and its presence should be considered when assessing the management of AMI patients. The inclusion of AVSc in risk stratification models may improve the accuracy of predicting the likelihood of recurrent AMI, leading to more personalized treatment decisions.


We wanted to understand the factors that make some acute myocardial infarction (AMI) patients more likely to experience recurrent infarction after leaving the hospital. Specifically, we asked whether a heart valve condition called non-stenotic aortic valve fibro-calcific remodeling (AVSc) could be a crucial factor. Our study used advanced data analysis techniques, including topological data analysis (TDA), to explore this question. We unveil that AVSc is indeed a significant predictor of recurrent infarction in AMI patients. Our findings suggest that the presence of aortic valve remodeling should be taken into account when assessing the risk of recurrent AMI and managing these patients.

15.
Antioxidants (Basel) ; 13(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38275636

RESUMEN

Type 2 diabetes mellitus (T2DM) is a prevalent and complex metabolic disorder associated with various complications, including cardiovascular diseases. Sodium-glucose co-transporter 2 inhibitors (SGLT2i) and glucagon-like peptide 1 receptor agonists (GLP1-RA) have emerged as novel therapeutic agents for T2DM, primarily aiming to reduce blood glucose levels. However, recent investigations have unveiled their multifaceted effects, extending beyond their glucose-lowering effect. SGLT2i operate by inhibiting the SGLT2 receptor in the kidneys, facilitating the excretion of glucose through urine, leading to reduced blood glucose levels, while GLP1-RA mimic the action of the GLP1 hormone, stimulating glucose-dependent insulin secretion from pancreatic islets. Both SGLT2i and GLP1-RA have shown remarkable benefits in reducing major cardiovascular events in patients with and without T2DM. This comprehensive review explores the expanding horizons of SGLT2i and GLP1-RA in improving cardiovascular health. It delves into the latest research, highlighting the effects of these drugs on heart physiology and metabolism. By elucidating their diverse mechanisms of action and emerging evidence, this review aims to recapitulate the potential of SGLT2i and GLP1-RA as therapeutic options for cardiovascular health beyond their traditional role in managing T2DM.

16.
Biomedicines ; 10(2)2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35203666

RESUMEN

Rationale-Calcific aortic valve stenosis (CAVS) is a pathological condition of the aortic valve with a prevalence of 3% in the general population. It is characterized by massive rearrangement of the extracellular matrix, mostly due to the accumulation of fibro-calcific deposits driven by valve interstitial cells (VIC), and no pharmacological treatment is currently available. The aim of this study was to evaluate the effects of P2Y2 receptor (P2RY2) activation on fibro-calcific remodeling of CAVS. Methods-We employed human primary VICs isolated from CAVS leaflets treated with 2-thiouridine-5'-triphosphate (2ThioUTP, 10 µM), an agonist of P2RY2. The calcification was induced by inorganic phosphate (2 mM) and ascorbic acid (50 µg/mL) for 7 or 14 days, while the 2ThioUTP was administered starting from the seventh day. 2ThioUTP was chronically administered for 5 days to evaluate myofibroblastic activation. Results-P2RY2 activation, under continuous or interrupted pro-calcific stimuli, led to a significant inhibition of VIC calcification potential (p < 0.01). Moreover, 2ThioUTP treatment was able to significantly reduce pro-fibrotic gene expression (p < 0.05), as well as that of protein α-smooth muscle actin (p = 0.004). Conclusions-Our data suggest that P2RY2 activation should be further investigated as a pharmacological target for the prevention of CAVS progression, acting on both calcification and myofibroblastic activation.

17.
Front Med (Lausanne) ; 9: 858281, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35355593

RESUMEN

Background: Cardiac amyloidosis (CA) has been recently recognized as a condition frequently associated with aortic stenosis (AS). The aim of this study was to evaluate: the main characteristics of patients with AS with and without CA, the impact of CA on patients with AS mortality, and the effect of different treatment strategies on outcomes of patients with AS with concomitant CA. Materials and Methods: A detailed search related to CA in patients with AS and outcomes was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Seventeen studies enrolling 1,988 subjects (1,658 AS alone and 330 AS with CA) were included in the qualitative and quantitative analysis of main patients with AS characteristics with and without CA, difference in mortality, and treatment strategy. Results: The prevalence of CA resulted in a mean of 15.4% and it was even higher in patients with AS over 80 years old (18.2%). Patients with the dual diagnosis were more often males, had lower body mass index (BMI), were more prone to have low flow, low gradient with reduced left ventricular ejection fraction AS phenotype, had higher E/A and E/e', and greater interventricular septum hypertrophy. Lower Sokolow-Lyon index, higher QRS duration, higher prevalence of right bundle branch block, higher levels of N-terminal pro-brain natriuretic peptide, and high-sensitivity troponin T were significantly associated with CA in patients with AS. Higher overall mortality in the 178 patients with AS + CA in comparison to 1,220 patients with AS alone was observed [odds ratio (OR) 2.25, p = 0.004]. Meta-regression analysis showed that younger age and diabetes were associated with overall mortality in patients with CS with CA (Z-value -3.0, p = 0.003 and Z-value 2.5, p = 0.013, respectively). Finally, patients who underwent surgical aortic valve replacement (SAVR) or transcatheter aortic valve implantation (TAVI) had a similar overall mortality risk, but lower than medication-treated only patients. Conclusion: Results from our meta-analysis suggest that several specific clinical, electrocardiographic, and echocardiographic features can be considered "red flags" of CA in patients with AS. CA negatively affects the outcome of patients with AS. Patients with concomitant CA and AS benefit from SAVR or TAVI.

18.
Antioxid Redox Signal ; 37(13-15): 1051-1071, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35459416

RESUMEN

Aims: During calcific aortic valve stenosis (CAVS) progression, oxidative stress and endothelial dysfunction mark the initial pathogenic steps with a parallel dysregulation of the antioxidant systems. Here, we tested whether oxidation-induced protein S-glutathionylation (P-SSG) accounts for a phenotypic switch in human aortic valvular tissue, eventually leading to calcium deposition. Next, we tested whether countering this reactive oxygen species (ROS) surge would prevent these perturbations. Results: We employed state-of-the-art technologies, such as electron paramagnetic resonance (EPR), liquid chromatography-tandem mass spectrometry, imaging flow-cytometry, and live-cell imaging on human excised aortic valves and primary valve endothelial cells (VECs). We observed that a net rise in EPR-detected ROS emission marked the transition from fibrotic to calcific in human CAVS specimens, coupled to a progressive increment in P-SSG deposition. In human VECs (hVECs), treatment with 2-acetylamino-3-[4-(2-acetylamino-2-carboxyethylsulfanylthiocarbonylamino)phenylthiocarbamoylsulfanyl]propionic acid triggered highly oxidizing conditions prompting P-SSG accumulation, damaging mitochondria, and inducing endothelial nitric oxide synthase uncoupling. All the events conjured up in morphing these cells from their native endothelial phenotype into a damaged calcification-inducing one. As proof of principle, the use of the antioxidant N-acetyl-L-cysteine prevented these alterations. Innovation: Borne as a compensatory system to face excessive oxidative burden, with time, P-SSG contributes to the morphing of hVECs from their innate phenotype into a damaged one, paving the way to calcium deposition. Conclusion: Our data suggest that, in the human aortic valve, unremitted ROS emission along with a P-SSG build-up occurs and accounts, at least in part, for the morphological/functional changes leading to CAVS. Antioxid. Redox Signal. 37, 1051-1071.


Asunto(s)
Estenosis de la Válvula Aórtica , Válvula Aórtica , Humanos , Válvula Aórtica/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Células Endoteliales/metabolismo , Calcio/metabolismo , Estenosis de la Válvula Aórtica/metabolismo , Fenotipo
19.
Biomedicines ; 10(6)2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35740375

RESUMEN

Circulating microRNAs (miRNA) have been proposed as specific biomarkers for several diseases. Quantitative Real-Time PCR (RT-qPCR) is the gold standard technique currently used to evaluate miRNAs expression from different sources. In the last few years, digital PCR (dPCR) emerged as a complementary and accurate detection method. When dealing with gene expression, the first and most delicate step is nucleic-acid isolation. However, all currently available protocols for RNA extraction suffer from the variable loss of RNA species due to the chemicals and number of steps involved, from sample lysis to nucleic acid elution. Here, we evaluated a new process for the detection of circulating miRNAs, consisting of sample lysis followed by direct evaluation by dPCR in plasma from healthy donors and in the cardiovascular setting. Our results showed that dPCR is able to detect, with high accuracy, low-copy-number as well as highly expressed miRNAs in human plasma samples without the need for RNA extraction. Moreover, we assessed a known myocardial infarction-related miR-133a in acute myocardial infarct patients vs. healthy subjects. In conclusion, our results show the suitability of the extraction-free quantification of circulating miRNAs as disease markers by direct dPCR.

20.
Front Immunol ; 13: 747714, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35280999

RESUMEN

Background: Aortic stenosis (AS) is the most common valve disorder characterized by fibro-calcific remodeling of leaflets. Recent evidence indicated that there is a sex-related difference in AS development and progression. Fibrotic remodeling is peculiar in women's aortic valves, while men's leaflets are more calcified. Our study aimed to assess aortic valve fibrosis (AVF) in a severe AS cohort using non-invasive diagnostic tools and determine whether sex-specific pathological pathways and cell types are associated with severe AS. Materials and Methods: We have included 28 men and 28 women matched for age with severe AS who underwent echocardiography and cardiac contrast-enhanced computed tomography (CT) before intervention. The calcium and fibrosis volumes were assessed and quantified using the ImageJ thresholding method, indexed calcium and fibrosis volume were calculated by dividing the volume by the aortic annular area. For a deeper understanding of molecular mechanisms characterizing AS disorder, differentially expressed genes and functional inferences between women and men's aortic valves were carried out on a publicly available microarray-based gene expression dataset (GSE102249). Cell types enrichment analysis in stenotic aortic valve tissues was used to reconstruct the sex-specific cellular composition of stenotic aortic valves. Results: In agreement with the literature, our CT quantifications showed that women had significantly lower aortic valve calcium content compared to men, while fibrotic tissue composition was significantly higher in women than men. The expression profiles of human stenotic aortic valves confirm sex-dependent processes. Pro-fibrotic processes were prevalent in women, while pro-inflammatory ones, linked to the immune response system, were enhanced in men. Cell-type enrichment analysis showed that mesenchymal cells were over-represented in AS valves of women, whereas signatures for monocytes, macrophages, T and B cells were enriched men ones. Conclusions: Our data provide the basis that the fibro-calcific process of the aortic valve is sex-specific, both at gene expression and cell type level. The quantification of aortic valve fibrosis by CT could make it possible to perform population-based studies and non-invasive assessment of novel therapies to reduce or halt sex-related calcific aortic valve stenosis (CAVS) progression, acting in an optimal window of opportunity early in the course of the disease.


Asunto(s)
Estenosis de la Válvula Aórtica , Fibromialgia , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/metabolismo , Válvula Aórtica/patología , Estenosis de la Válvula Aórtica/diagnóstico por imagen , Estenosis de la Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/patología , Calcinosis , Calcio/metabolismo , Femenino , Fibrosis , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA