Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Appl Environ Microbiol ; 86(22)2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-32917751

RESUMEN

Nitrite-oxidizing bacteria (NOB) are ubiquitous and abundant microorganisms that play key roles in global nitrogen and carbon biogeochemical cycling. Despite recent advances in understanding NOB physiology and taxonomy, currently very few cultured NOB or representative NOB genome sequences from marine environments exist. In this study, we employed enrichment culturing and genomic approaches to shed light on the phylogeny and metabolic capacity of marine NOB. We successfully enriched two marine NOB (designated MSP and DJ) and obtained a high-quality metagenome-assembled genome (MAG) from each organism. The maximum nitrite oxidation rates of the MSP and DJ enrichment cultures were 13.8 and 30.0 µM nitrite per day, respectively, with these optimum rates occurring at 0.1 mM and 0.3 mM nitrite, respectively. Each enrichment culture exhibited a different tolerance to various nitrite and salt concentrations. Based on phylogenomic position and overall genome relatedness indices, both NOB MAGs were proposed as novel taxa within the Nitrospinota and Nitrospirota phyla. Functional predictions indicated that both NOB MAGs shared many highly conserved metabolic features with other NOB. Both NOB MAGs encoded proteins for hydrogen and organic compound metabolism and defense mechanisms for oxidative stress. Additionally, these organisms may have the genetic potential to produce cobalamin (an essential enzyme cofactor that is limiting in many environments) and, thus, may play an important role in recycling cobalamin in marine sediment. Overall, this study appreciably expands our understanding of the Nitrospinota and Nitrospirota phyla and suggests that these NOB play important biogeochemical roles in marine habitats.IMPORTANCE Nitrification is a key process in the biogeochemical and global nitrogen cycle. Nitrite-oxidizing bacteria (NOB) perform the second step of aerobic nitrification (converting nitrite to nitrate), which is critical for transferring nitrogen to other organisms for assimilation or energy. Despite their ecological importance, there are few cultured or genomic representatives from marine systems. Here, we obtained two NOB (designated MSP and DJ) enriched from marine sediments and estimated the physiological and genomic traits of these marine microbes. Both NOB enrichment cultures exhibit distinct responses to various nitrite and salt concentrations. Genomic analyses suggest that these NOB are metabolically flexible (similar to other previously described NOB) yet also have individual genomic differences that likely support distinct niche distribution. In conclusion, this study provides more insights into the ecological roles of NOB in marine environments.


Asunto(s)
Bacterias/clasificación , Bacterias/metabolismo , Microbiota , Nitritos/metabolismo , Bacterias/aislamiento & purificación , Sedimentos Geológicos/microbiología , Redes y Vías Metabólicas , Oxidación-Reducción , República de Corea , Agua de Mar/microbiología
2.
Microb Ecol ; 79(3): 562-575, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31446448

RESUMEN

Denitrifying microbial communities play a central role in the nitrogen cycle, contribute to greenhouse gas production, and provide ecosystem services through the mitigation of nitrogen pollution. The impacts of human-induced acid mine drainage (AMD) and naturally occurring acid rock drainage (ARD), both characterized by low pH and high metal concentrations, on denitrifying microbial communities is not well understood. This study examined denitrifying microbes within sediments impacted by acidic and metal-rich AMD or ARD in the Iron Springs Mining District (10 sites across four regions over four time points) located in Southwest Colorado, USA. Denitrification functional gene sequences (nirS and nirK coding for nitrite reductase) had a high number of observed OTUs (260 for nirS and 253 for nirK) and were observed at sites with pH as low as 3.5 and metals > 2 mg/L (including aluminum, iron, manganese, strontium, and zinc). A majority of the nirK and nirS OTUs (> 60%) were present in only one sampling region. Approximately 8% of the nirK and nirS OTUs had a more cosmopolitan distribution with presence in three or more regions. Phylogenetically related OTUs were found across sites with very different chemistry. The overall community structure for nirK and nirS genes was correlated to conductivity and calcium (respectively), which may suggest that conductivity may play an important role in shaping the distribution of nirK- and nirS-type denitrifiers. Overall, these findings improve upon our understanding of the potential for denitrification within an ecosystem impacted by AMD or ARD and provide a foundation for future research to understand the rates and physiology of denitrifying organisms in these systems.


Asunto(s)
Bacterias/enzimología , Genes Bacterianos , Sedimentos Geológicos/microbiología , Minería , Nitrito Reductasas/análisis , Bacterias/clasificación , Bacterias/genética , Colorado , Desnitrificación , Concentración de Iones de Hidrógeno , Microbiota
3.
Microb Ecol ; 69(1): 13-24, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25038845

RESUMEN

The primary objective of this study was to gain an understanding of how key microbial communities involved in nitrogen cycling in estuarine sediments vary over a 12-month period. Furthermore, we sought to determine whether changes in the size of these communities are related to, or indicative of, seasonal patterns in fixed nitrogen dynamics in Elkhorn Slough--a small, agriculturally impacted estuary with a direct connection to Monterey Bay. We assessed sediment and pore water characteristics, abundance of functional genes for nitrification (bacterial and archaeal amoA, encoding ammonia monooxygenase subunit A) and denitrification (nirS and nirK, encoding nitrite reductase), and measurements of potential nitrification and denitrification activities at six sites. No seasonality in the abundance of denitrifier or ammonia oxidizer genes was observed. A strong association between potential nitrification activity and the size of ammonia-oxidizing bacterial communities was observed across the estuary. In contrast, ammonia-oxidizing archaeal abundances remained relatively constant in space and time. Unlike many other estuaries, salinity does not appear to regulate the distribution of ammonia-oxidizing communities in Elkhorn Slough. Instead, their distributions appear to be governed over two different time scales. Long-term niche characteristics selected for the gross size of archaeal and bacterial ammonia-oxidizing communities, yet covariation in their abundances between monthly samples suggests that they respond in a similar manner to short-term changes in their environment. Abundances of denitrifier and ammonia oxidizer genes also covaried, but site-specific differences in this relationship suggest differing levels of interaction (or coupling) between nitrification and denitrification.


Asunto(s)
Amoníaco/metabolismo , Sedimentos Geológicos/microbiología , Desnitrificación , Datos de Secuencia Molecular , Oxidorreductasas/metabolismo
4.
Environ Microbiol ; 16(10): 3224-37, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24750948

RESUMEN

Understanding how individual species contribute to nutrient transformations in a microbial community is critical to prediction of overall ecosystem function. We conducted microcosm experiments in which floating acid mine drainage (AMD) microbial biofilms were submerged - recapitulating the final stage in a natural biofilm life cycle. Biofilms were amended with either (15)NH4(+) or deuterium oxide ((2)H2O) and proteomic stable isotope probing (SIP) was used to track the extent to which different members of the community used these molecules in protein synthesis across anaerobic iron-reducing, aerobic iron-reducing and aerobic iron-oxidizing environments. Sulfobacillus spp. synthesized (15)N-enriched protein almost exclusively under iron-reducing conditions whereas the Leptospirillum spp. synthesized (15)N-enriched protein in all conditions. There were relatively few (15)N-enriched archaeal proteins, and all showed low atom% enrichment, consistent with Archaea synthesizing protein using the predominantly (14)N biomass derived from recycled biomolecules. In parallel experiments using (2)H2O, extensive archaeal protein synthesis was detected in all conditions. In contrast, the bacterial species showed little protein synthesis using (2)H2O. The nearly exclusive ability of Archaea to synthesize proteins using (2)H2O may be due to archaeal heterotrophy, whereby Archaea offset deleterious effects of (2)H by accessing (1)H generated by respiration of organic compounds.


Asunto(s)
Archaea/metabolismo , Proteínas Arqueales/biosíntesis , Procesos Heterotróficos , Nitrógeno/metabolismo , Proteínas Arqueales/metabolismo , Bacterias/metabolismo , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/metabolismo , Biopelículas , Óxido de Deuterio , Ecosistema , Hierro/metabolismo , Isótopos de Nitrógeno , Oxidación-Reducción , Proteómica
5.
bioRxiv ; 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37502915

RESUMEN

Predicting elemental cycles and maintaining water quality under increasing anthropogenic influence requires understanding the spatial drivers of river microbiomes. However, the unifying microbial processes governing river biogeochemistry are hindered by a lack of genome-resolved functional insights and sampling across multiple rivers. Here we employed a community science effort to accelerate the sampling, sequencing, and genome-resolved analyses of river microbiomes to create the Genome Resolved Open Watersheds database (GROWdb). This resource profiled the identity, distribution, function, and expression of thousands of microbial genomes across rivers covering 90% of United States watersheds. Specifically, GROWdb encompasses 1,469 microbial species from 27 phyla, including novel lineages from 10 families and 128 genera, and defines the core river microbiome for the first time at genome level. GROWdb analyses coupled to extensive geospatial information revealed local and regional drivers of microbial community structuring, while also presenting a myriad of foundational hypotheses about ecosystem function. Building upon the previously conceived River Continuum Concept 1 , we layer on microbial functional trait expression, which suggests the structure and function of river microbiomes is predictable. We make GROWdb available through various collaborative cyberinfrastructures 2, 3 so that it can be widely accessed across disciplines for watershed predictive modeling and microbiome-based management practices.

6.
J Bacteriol ; 194(8): 2119-20, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22461554

RESUMEN

Here, we present the draft genome sequence of "Candidatus Nitrosoarchaeum limnia" BG20, an ammonia-oxidizing archaeon enriched in culture from low-salinity sediments of the San Francisco Bay estuary. The genome sequence revealed many similarities to the previously sequenced genome of "Ca. Nitrosoarchaeum limnia" SFB1 (enriched from a nearby site in San Francisco Bay) and is representative of a clade of ammonia-oxidizing archaea (AOA) found in low-salinity habitats worldwide.


Asunto(s)
Amoníaco/metabolismo , Archaea/clasificación , Archaea/genética , Genoma Arqueal , Secuencia de Bases , Regulación de la Expresión Génica Arqueal , Sedimentos Geológicos/microbiología , Datos de Secuencia Molecular , Nitrógeno/metabolismo , Océanos y Mares , Oxidación-Reducción
7.
J Bacteriol ; 194(8): 2121-2, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22461555

RESUMEN

Ammonia-oxidizing archaea (AOA) play important roles in nitrogen and carbon cycling in marine and terrestrial ecosystems. Here, we present the draft genome sequence for the ammonia-oxidizing archaeon "Candidatus Nitrosopumilus salaria" BD31, which was enriched in culture from sediments of the San Francisco Bay estuary. The genome sequences revealed many similarities to the genome of Nitrosopumilus maritimus.


Asunto(s)
Amoníaco/metabolismo , Archaea/clasificación , Archaea/genética , Genoma Arqueal , Secuencia de Bases , Regulación de la Expresión Génica Arqueal , Sedimentos Geológicos/microbiología , Datos de Secuencia Molecular , Nitrógeno/metabolismo , Océanos y Mares , Oxidación-Reducción
8.
Microb Ecol ; 64(4): 955-63, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22644483

RESUMEN

Ammonia oxidation in marine and terrestrial ecosystems plays a pivotal role in the cycling of nitrogen and carbon. Recent discoveries have shown that ammonia-oxidizing archaea (AOA) are both abundant and diverse in these systems, yet very little is known about their physiology. Here we report a physiological analysis of a novel low-salinity-type AOA enriched from the San Francisco Bay estuary, Candidatus Nitrosoarchaeum limnia strain SFB1. N. limnia has a slower growth rate than Nitrosopumilus maritimus and Nitrososphaera viennensis EN76, the only pure AOA isolates described to date, but the growth rate is comparable to the growth of marine AOA enrichment cultures. The growth rate only slightly decreased when N. limnia was grown under lower-oxygen conditions (5.5 % oxygen in the headspace). Although N. limnia was capable of growth at 75 % of seawater salinity, there was a longer lag time, incomplete oxidation of ammonia to nitrite, and slower overall growth rate. Allylthiourea (ATU) only partially inhibited growth and ammonia oxidation by N. limnia at concentrations known to completely inhibit bacterial ammonia oxidation. Using electron microscopy, we confirmed the presence of flagella as suggested by various flagellar biosynthesis genes in the N. limnia genome. We demonstrate that N. limnia is representative of a low-salinity estuarine AOA ecotype and that more than 85 % of its proteins have highest identity to other coastal and estuarine metagenomic sequences. Our findings further highlight the physiology of N. limnia and help explain its ecological adaptation to low-salinity niches.


Asunto(s)
Adaptación Fisiológica , Amoníaco/metabolismo , Archaea/fisiología , Ecosistema , Cloruro de Sodio/farmacología , Archaea/clasificación , Archaea/genética , Archaea/ultraestructura , Medios de Cultivo , Sedimentos Geológicos/microbiología , Microscopía Electrónica de Transmisión , Oxidación-Reducción , San Francisco , Agua de Mar/microbiología
9.
Appl Environ Microbiol ; 77(1): 269-80, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21057023

RESUMEN

Ammonia oxidation-the microbial oxidation of ammonia to nitrite and the first step in nitrification-plays a central role in nitrogen cycling in coastal and estuarine systems. Nevertheless, questions remain regarding the connection between this biogeochemical process and the diversity and abundance of the mediating microbial community. In this study, we measured nutrient fluxes and rates of sediment nitrification in conjunction with the diversity and abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing betaproteobacteria (ß-AOB). Sediments were examined from four sites in Elkhorn Slough, a small agriculturally impacted coastal California estuary that opens into Monterey Bay. Using an intact sediment core flowthrough incubation system, we observed significant correlations among NO(3)(-), NO(2)(-), NH(4)(+), and PO(4)(3+) fluxes, indicating a tight coupling of sediment biogeochemical processes. (15)N-based measurements of nitrification rates revealed higher rates at the less impacted, lower-nutrient sites than at the more heavily impacted, nutrient-rich sites. Quantitative PCR analyses revealed that ß-AOB amoA (encoding ammonia monooxygenase subunit A) gene copies outnumbered AOA amoA gene copies by factors ranging from 2- to 236-fold across the four sites. Sites with high nitrification rates primarily contained marine/estuarine Nitrosospira-like bacterial amoA sequences and phylogenetically diverse archaeal amoA sequences. Sites with low nitrification rates were dominated by estuarine Nitrosomonas-like amoA sequences and archaeal amoA sequences similar to those previously described in soils. This is the first report measuring AOA and ß-AOB amoA abundance in conjunction with (15)N-based nitrification rates in estuary sediments.


Asunto(s)
Amoníaco/metabolismo , Archaea/clasificación , Betaproteobacteria/clasificación , Biodiversidad , Sedimentos Geológicos/microbiología , Nitrificación , Archaea/genética , Archaea/metabolismo , Proteínas Arqueales/genética , Proteínas Bacterianas/genética , Betaproteobacteria/genética , Betaproteobacteria/metabolismo , California , Datos de Secuencia Molecular , Nitratos/metabolismo , Nitritos/metabolismo , Isótopos de Nitrógeno/metabolismo , Oxidación-Reducción , Oxidorreductasas/genética , Fosfatos/metabolismo , Análisis de Secuencia de ADN , Coloración y Etiquetado/métodos
10.
Appl Environ Microbiol ; 77(10): 3468-77, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21441324

RESUMEN

Glycerol dibiphytanyl glycerol tetraether (GDGT)-based intact membrane lipids are increasingly being used as complements to conventional molecular methods in ecological studies of ammonia-oxidizing archaea (AOA) in the marine environment. However, the few studies that have been done on the detailed lipid structures synthesized by AOA in (enrichment) culture are based on species enriched from nonmarine environments, i.e., a hot spring, an aquarium filter, and a sponge. Here we have analyzed core and intact polar lipid (IPL)-GDGTs synthesized by three newly available AOA enriched directly from marine sediments taken from the San Francisco Bay estuary ("Candidatus Nitrosoarchaeum limnia"), and coastal marine sediments from Svalbard, Norway, and South Korea. Like previously screened AOA, the sedimentary AOA all synthesize crenarchaeol (a GDGT containing a cyclohexane moiety and four cyclopentane moieties) as a major core GDGT, thereby supporting the hypothesis that crenarchaeol is a biomarker lipid for AOA. The IPL headgroups synthesized by sedimentary AOA comprised mainly monohexose, dihexose, phosphohexose, and hexose-phosphohexose moieties. The hexose-phosphohexose headgroup bound to crenarchaeol was common to all enrichments and, in fact, the only IPL common to every AOA enrichment analyzed to date. This apparent specificity, in combination with its inferred lability, suggests that it may be the most suitable biomarker lipid to trace living AOA. GDGTs bound to headgroups with a mass of 180 Da of unknown structure appear to be specific to the marine group I.1a AOA: they were synthesized by all three sedimentary AOA and "Candidatus Nitrosopumilus maritimus"; however, they were absent in the group I.1b AOA "Candidatus Nitrososphaera gargensis."


Asunto(s)
Amoníaco/metabolismo , Archaea/química , Archaea/metabolismo , Éteres de Glicerilo/química , Éteres de Glicerilo/aislamiento & purificación , Lípidos de la Membrana/química , Lípidos de la Membrana/aislamiento & purificación , Archaea/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Sedimentos Geológicos/microbiología , Hexosas/análisis , Corea (Geográfico) , Espectrometría de Masas , Oxidación-Reducción , San Francisco , Svalbard
12.
Front Microbiol ; 12: 709371, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34484146

RESUMEN

Nitrogen cycling microbes, including nitrite-oxidizing bacteria (NOB), perform critical ecosystem functions that help mitigate anthropogenic stresses and maintain ecosystem health. Activity of these beneficial nitrogen cycling microbes is dictated in part by the microorganisms' response to physicochemical conditions, such as temperature, pH, and nutrient availability. NOB from the newly described Candidatus Nitrotoga genus have been detected in a wide range of habitats across the globe, yet only a few organisms within the genus have been physiologically characterized. For freshwater systems where NOB are critical for supporting aquatic life, Ca. Nitrotoga have been previously detected but little is known about the physiological potential of these organisms or their response to changing environmental conditions. Here, we determined functional response to environmental change for a representative freshwater species of Ca. Nitrotoga (Ca. Nitrotoga sp. CP45, enriched from a Colorado river). The physiological findings demonstrated that CP45 maintained nitrite oxidation at pH levels of 5-8, at temperatures from 4 to 28°C, and when incubated in the dark. Light exposure and elevated temperature (30°C) completely halted nitrite oxidation. Ca. Nitrotoga sp. CP45 maintained nitrite oxidation upon exposure to four different antibiotics, and potential rates of nitrite oxidation by river sediment communities were also resilient to antibiotic stress. We explored the Ca. Nitrotoga sp. CP45 genome to make predictions about adaptations to enable survival under specific conditions. Overall, these results contribute to our understanding of the versatility of a representative freshwater Ca. Nitrotoga sp. Identifying the specific environmental conditions that maximize NOB metabolic rates may ultimately direct future management decisions aimed at restoring impacted systems.

13.
PLoS One ; 14(11): e0223834, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31703071

RESUMEN

Western honey bees (Apis mellifera) are important pollinators in natural and agricultural ecosystems, and yet are in significant decline due to several factors including parasites, pathogens, pesticides, and habitat loss. A new beehive construction called the FlowTM hive was developed in 2015 to allow honey to be harvested directly from the hive without opening it, resulting in an apparent decrease in stress to the bees. Here, we compared the Flow and traditional Langstroth hive constructions to determine if there were any significant differences in the bee microbiome. The bee-associated bacterial communities did not differ between hive constructions and varied only slightly over the course of a honey production season. Samples were dominated by taxa belonging to the Lactobacillus, Bifidobacterium, Bartonella, Snodgrassella, Gilliamella, and Frischella genera, as observed in previous studies. The top ten most abundant taxa made up the majority of the sequence data; however, many low abundance organisms were persistent across the majority of samples regardless of sampling time or hive type. We additionally compared different preparations of whole bee and dissected bee samples to elaborate on previous bee microbiome research. We found that bacterial sequences were overwhelming derived from the bee guts, and microbes on the bee surfaces (including pollen) contributed little to the overall microbiome of whole bees. Overall, the results indicate that different hive constructions and associated disturbance levels do not influence the bee gut microbiome, which has broader implications for supporting hive health.


Asunto(s)
Abejas/metabolismo , Abejas/microbiología , Miel , Microbiota , Estaciones del Año , Animales , Bacterias/clasificación , Bacterias/aislamiento & purificación , Polinización
14.
Environ Microbiol ; 10(11): 3002-16, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18973621

RESUMEN

Ammonia oxidation in marine and estuarine sediments plays a pivotal role in the cycling and removal of nitrogen. Recent reports have shown that the newly discovered ammonia-oxidizing archaea can be both abundant and diverse in aquatic and terrestrial ecosystems. In this study, we examined the abundance and diversity of ammonia-oxidizing archaea (AOA) and betaproteobacteria (beta-AOB) across physicochemical gradients in San Francisco Bay--the largest estuary on the west coast of the USA. In contrast to reports that AOA are far more abundant than beta-AOB in both terrestrial and marine systems, our quantitative PCR estimates indicated that beta-AOB amoA (encoding ammonia monooxygenase subunit A) copy numbers were greater than AOA amoA in most of the estuary. Ammonia-oxidizing archaea were only more pervasive than beta-AOB in the low-salinity region of the estuary. Both AOA and beta-AOB communities exhibited distinct spatial structure within the estuary. AOA amoA sequences from the north part of the estuary formed a large and distinct low-salinity phylogenetic group. The majority of the beta-AOB sequences were closely related to other marine/estuarine Nitrosomonas-like and Nitrosospira-like sequences. Both ammonia-oxidizer community composition and abundance were strongly correlated with salinity. Ammonia-oxidizing enrichment cultures contained AOA and beta-AOB amoA sequences with high similarity to environmental sequences. Overall, this study significantly enhances our understanding of estuarine ammonia-oxidizing microbial communities and highlights the environmental conditions and niches under which different AOA and beta-AOB phylotypes may thrive.


Asunto(s)
Amoníaco/metabolismo , Archaea/clasificación , Archaea/metabolismo , Betaproteobacteria/clasificación , Betaproteobacteria/metabolismo , Biodiversidad , Sedimentos Geológicos/microbiología , Archaea/genética , Archaea/aislamiento & purificación , Proteínas Arqueales/genética , Proteínas Bacterianas/genética , Betaproteobacteria/genética , Betaproteobacteria/aislamiento & purificación , ADN de Archaea/genética , ADN Bacteriano/genética , Datos de Secuencia Molecular , Oxidación-Reducción , Oxidorreductasas/genética , Filogenia , Sales (Química) , San Francisco , Agua de Mar/microbiología , Análisis de Secuencia de ADN
15.
ISME J ; 12(12): 2864-2882, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30050164

RESUMEN

Nitrite-oxidizing bacteria (NOB) play a critical role in the mitigation of nitrogen pollution by metabolizing nitrite to nitrate, which is removed via assimilation, denitrification, or anammox. Recent studies showed that NOB are phylogenetically and metabolically diverse, yet most of our knowledge of NOB comes from only a few cultured representatives. Using cultivation and genomic sequencing, we identified four putative Candidatus Nitrotoga NOB species from freshwater sediments and water column samples in Colorado, USA. Genome analyses indicated highly conserved 16S rRNA gene sequences, but broad metabolic potential including genes for nitrogen, sulfur, hydrogen, and organic carbon metabolism. Genomic predictions suggested that Ca. Nitrotoga can metabolize in low oxygen or anoxic conditions, which may support an expanded environmental niche for Ca. Nitrotoga similar to other NOB. An array of antibiotic and metal resistance genes likely allows Ca. Nitrotoga to withstand environmental pressures in impacted systems. Phylogenetic analyses highlighted a deeply divergent nitrite oxidoreductase alpha subunit (NxrA), suggesting a novel evolutionary trajectory for Ca. Nitrotoga separate from any other NOB and further revealing the complex evolutionary history of nitrite oxidation in the bacterial domain. Ca. Nitrotoga-like 16S rRNA gene sequences were prevalent in globally distributed environments over a range of reported temperatures. This work considerably expands our knowledge of the Ca. Nitrotoga genus and suggests that their contribution to nitrogen cycling should be considered alongside other NOB in wide variety of habitats.


Asunto(s)
Gallionellaceae/genética , Genómica , Nitritos/metabolismo , Colorado , Agua Dulce , Gallionellaceae/metabolismo , Nitratos/metabolismo , Oxidorreductasas/genética , Filogenia , ARN Bacteriano/genética , ARN Ribosómico 16S/genética
16.
FEMS Microbiol Ecol ; 59(2): 274-88, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17092309

RESUMEN

Lake Vida, located in the McMurdo Dry Valleys, Antarctica, is an 'ice-sealed' lake with approximately 19 m of ice covering a highly saline water column (approximately 245 ppt). The lower portions of the ice cover and the lake beneath have been isolated from the atmosphere and land for circa 2800 years. Analysis of microbial assemblages within the perennial ice cover of the lake revealed a diverse array of bacteria and eukarya. Bacterial and eukaryal denaturing gradient gel electrophoresis phylotype profile similarities were low (<59%) between all of the depths compared (five depths spanning 11 m of the ice cover), with the greatest differences occurring between surface and deep ice. The majority of bacterial 16S rRNA gene sequences in the surface ice were related to Actinobacteria (42%) while Gammaproteobacteria (52%) dominated the deep ice community. Comparisons of assemblage composition suggest differences in ice habitability and organismal origin in the upper and lower portions of ice cover. Specifically, the upper ice cover microbiota likely reflect the modern day transport and colonization of biota from the terrestrial landscape, whereas assemblages in the deeper ice are more likely to be persistent remnant biota that originated from the ancient liquid water column of the lake that froze.


Asunto(s)
Actinobacteria , Chlorophyta , Agua Dulce/microbiología , Gammaproteobacteria , Cubierta de Hielo/microbiología , Actinobacteria/clasificación , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Regiones Antárticas , Chlorophyta/clasificación , Chlorophyta/genética , Chlorophyta/aislamiento & purificación , Gammaproteobacteria/clasificación , Gammaproteobacteria/genética , Gammaproteobacteria/aislamiento & purificación , Genes de ARNr , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN
17.
Front Microbiol ; 8: 2136, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29209281

RESUMEN

Extremely acidic and metal-rich acid mine drainage (AMD) waters can have severe toxicological effects on aquatic ecosystems. AMD has been shown to completely halt nitrification, which plays an important role in transferring nitrogen to higher organisms and in mitigating nitrogen pollution. We evaluated the gene abundance and diversity of nitrifying microbes in AMD-impacted sediments: ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and nitrite-oxidizing bacteria (NOB). Samples were collected from the Iron Springs Mining District (Ophir, CO, United States) during early and late summer in 2013 and 2014. Many of the sites were characterized by low pH (<5) and high metal concentrations. Sequence analyses revealed AOA genes related to Nitrososphaera, Nitrosotalea, and Nitrosoarchaeum; AOB genes related to Nitrosomonas and Nitrosospira; and NOB genes related to Nitrospira. The overall abundance of AOA, AOB and NOB was examined using quantitative PCR (qPCR) amplification of the amoA and nxrB functional genes and 16S rRNA genes. Gene copy numbers ranged from 3.2 × 104 - 4.9 × 107 archaeal amoA copies ∗ µg DNA-1, 1.5 × 103 - 5.3 × 105 AOB 16S rRNA copies ∗ µg DNA-1, and 1.3 × 106 - 7.7 × 107Nitrospira nxrB copies ∗ µg DNA-1. Overall, Nitrospira nxrB genes were found to be more abundant than AOB 16S rRNA and archaeal amoA genes in most of the sample sites across 2013 and 2014. AOB 16S rRNA and Nitrospira nxrB genes were quantified in sediments with pH as low as 3.2, and AOA amoA genes were quantified in sediments as low as 3.5. Though pH varied across all sites (pH 3.2-8.3), pH was not strongly correlated to the overall community structure or relative abundance of individual OTUs for any gene (based on CCA and Spearman correlations). pH was positivity correlated to the total abundance (qPCR) of AOB 16S rRNA genes, but not for any other genes. Metals were not correlated to the overall nitrifier community composition or abundance, but were correlated to the relative abundances of several individual OTUs. These findings extend our understanding of the distribution of nitrifying microbes in AMD-impacted systems and provide a platform for further research.

18.
Front Microbiol ; 7: 238, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26973616

RESUMEN

The ecosystem roles of fungi have been extensively studied by targeting one organism and/or biological process at a time, but the full metabolic potential of fungi has rarely been captured in an environmental context. We hypothesized that fungal genome sequences could be assembled directly from the environment using metagenomics and that transcriptomics and proteomics could simultaneously reveal metabolic differentiation across habitats. We reconstructed the near-complete 27 Mbp genome of a filamentous fungus, Acidomyces richmondensis, and evaluated transcript and protein expression in floating and streamer biofilms from an acid mine drainage (AMD) system. A. richmondensis transcripts involved in denitrification and in the degradation of complex carbon sources (including cellulose) were up-regulated in floating biofilms, whereas central carbon metabolism and stress-related transcripts were significantly up-regulated in streamer biofilms. These findings suggest that the biofilm niches are distinguished by distinct carbon and nitrogen resource utilization, oxygen availability, and environmental challenges. An isolated A. richmondensis strain from this environment was used to validate the metagenomics-derived genome and confirm nitrous oxide production at pH 1. Overall, our analyses defined mechanisms of fungal adaptation and identified a functional shift related to different roles in carbon and nitrogen turnover for the same species of fungi growing in closely located but distinct biofilm niches.

19.
ISME J ; 9(1): 180-94, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25050524

RESUMEN

Microbial communities that underpin global biogeochemical cycles will likely be influenced by elevated temperature associated with environmental change. Here, we test an approach to measure how elevated temperature impacts the physiology of individual microbial groups in a community context, using a model microbial-based ecosystem. The study is the first application of tandem mass tag (TMT)-based proteomics to a microbial community. We accurately, precisely and reproducibly quantified thousands of proteins in biofilms growing at 40, 43 and 46 °C. Elevated temperature led to upregulation of proteins involved in amino-acid metabolism at the level of individual organisms and the entire community. Proteins from related organisms differed in their relative abundance and functional responses to temperature. Elevated temperature repressed carbon fixation proteins from two Leptospirillum genotypes, whereas carbon fixation proteins were significantly upregulated at higher temperature by a third member of this genus. Leptospirillum group III bacteria may have been subject to viral stress at elevated temperature, which could lead to greater carbon turnover in the microbial food web through the release of viral lysate. Overall, these findings highlight the utility of proteomics-enabled community-based physiology studies, and provide a methodological framework for possible extension to additional mixed culture and environmental sample analyses.


Asunto(s)
Proteínas Bacterianas/análisis , Biopelículas , Calor , Leptospiraceae/fisiología , Proteoma , Proteínas Arqueales/análisis , Proteínas Arqueales/metabolismo , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Humanos , Leptospiraceae/genética , Leptospiraceae/crecimiento & desarrollo , Proteoma/genética , Proteómica/métodos , Proteómica/normas , Thermoplasmales/fisiología
20.
Front Microbiol ; 5: 743, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25620958

RESUMEN

Nitrogen pollution in coastal zones is a widespread issue, particularly in ecosystems with urban or agricultural watersheds. California's Sacramento-San Joaquin Delta, at the landward reaches of San Francisco Bay, is highly impacted by both agricultural runoff and sewage effluent, leading to chronically high nutrient loadings. In particular, the extensive discharge of ammonium into the Sacramento River has altered this ecosystem by vastly increasing ammonium concentrations and thus changing the stoichiometry of inorganic nitrogen stocks, with potential effects throughout the food web. This debate surrounding ammonium inputs highlights the importance of understanding the rates of, and controls on, nitrogen (N) cycling processes across the delta. To date, however, there has been little research examining N biogeochemistry or N-cycling microbial communities in this system. We report the first data on benthic ammonia-oxidizing microbial communities and potential nitrification rates for the Sacramento-San Joaquin Delta, focusing on the functional gene amoA (which codes for the α-subunit of ammonia monooxygenase). There were stark regional differences in ammonia-oxidizing communities, with ammonia-oxidizing bacteria (AOB) outnumbering ammonia-oxidizing archaea (AOA) only in the ammonium-rich Sacramento River. High potential nitrification rates in the Sacramento River suggested these communities may be capable of oxidizing significant amounts of ammonium, compared to the San Joaquin River and the upper reaches of San Francisco Bay. Gene diversity also showed regional patterns, as well as phylogenetically unique ammonia oxidizers in the Sacramento River. The benthic ammonia oxidizers in this nutrient-rich aquatic ecosystem may be important players in its overall nutrient cycling, and their community structure and biogeochemical function appear related to nutrient loadings. Unraveling the microbial ecology and biogeochemistry of N cycling pathways, including benthic nitrification, is a critical step toward understanding how such ecosystems respond to the changing environmental conditions wrought by human development and climate change.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA