Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Biol Chem ; 292(42): 17302-17311, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-28848052

RESUMEN

myo-Inositol phosphates (IPs) are important bioactive molecules that have multiple activities within eukaryotic cells, including well-known roles as second messengers and cofactors that help regulate diverse biochemical processes such as transcription and hormone receptor activity. Despite the typical absence of IPs in prokaryotes, many of these organisms express IPases (or phytases) that dephosphorylate IPs. Functionally, these enzymes participate in phosphate-scavenging pathways and in plant pathogenesis. Here, we determined the X-ray crystallographic structures of two catalytically inactive mutants of protein-tyrosine phosphatase-like myo-inositol phosphatases (PTPLPs) from the non-pathogenic bacteria Selenomonas ruminantium (PhyAsr) and Mitsuokella multacida (PhyAmm) in complex with the known eukaryotic second messengers Ins(1,3,4,5)P4 and Ins(1,4,5)P3 Both enzymes bound these less-phosphorylated IPs in a catalytically competent manner, suggesting that IP hydrolysis has a role in plant pathogenesis. The less-phosphorylated IP binding differed in both the myo-inositol ring position and orientation when compared with a previously determined complex structure in the presence of myo-inositol-1,2,3,4,5,6-hexakisphosphate (InsP6 or phytate). Further, we have demonstrated that PhyAsr and PhyAmm have different specificities for Ins(1,2,4,5,6)P5, have identified structural features that account for this difference, and have shown that the absence of these features results in a broad specificity toward Ins(1,2,4,5,6)P5 These features are main-chain conformational differences in loops adjacent to the active site that include the extended loop prior to the penultimate helix, the extended Ω-loop, and a ß-hairpin turn of the Phy-specific domain.


Asunto(s)
Proteínas Bacterianas/química , Inositol 1,4,5-Trifosfato/química , Fosfatos de Inositol/química , Proteínas Tirosina Fosfatasas/química , Sistemas de Mensajero Secundario , Selenomonas/enzimología , Cristalografía por Rayos X , Estructura Secundaria de Proteína , Especificidad por Sustrato
2.
J Biol Chem ; 287(13): 9722-9730, 2012 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-22139834

RESUMEN

Protein-tyrosine phosphatase-like inositol polyphosphatases are microbial enzymes that catalyze the stepwise removal of one or more phosphates from highly phosphorylated myo-inositols via a relatively ordered pathway. To understand the substrate specificity and kinetic mechanism of these enzymes we have determined high resolution, single crystal, x-ray crystallographic structures of inactive Selenomonas ruminantium PhyA in complex with myo-inositol hexa- and pentakisphosphate. These structures provide the first glimpse of a myo-inositol polyphosphatase-ligand complex consistent with its known specificity and reveal novel features of the kinetic mechanism. To complement the structural studies, fluorescent binding assays have been developed and demonstrate that the K(d) for this enzyme is several orders of magnitude lower than the K(m). Together with rapid kinetics data, these results suggest that the protein tyrosine phosphatase-like inositol polyphosphatases have a two-step, substrate-binding mechanism that facilitates catalysis.


Asunto(s)
Fosfatos de Inositol/química , Monoéster Fosfórico Hidrolasas/química , Proteínas Tirosina Fosfatasas/química , Selenomonas/enzimología , Sitios de Unión , Catálisis , Cristalografía por Rayos X , Cinética , Unión Proteica , Especificidad por Sustrato
3.
FEBS J ; 275(15): 3783-92, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18573100

RESUMEN

The protein tyrosine phosphatase (PTP)-like phytase, PhyAsr, from Selenomonas ruminantium is a novel member of the PTP superfamily, and the only described member that hydrolyzes myo-inositol-1,2,3,4,5,6-hexakisphosphate. In addition to the unique substrate specificity of PhyAsr, the phosphate-binding loop (P-loop) has been reported to undergo a conformational change from an open (inactive) to a closed (active) conformation upon ligand binding at low ionic strength. At high ionic strengths, the P-loop was observed in the closed, active conformation in both the presence and absence of ligand. To test whether the P-loop movement can be induced by changes in ionic strength, we examined the effect that ionic strength has on the catalytic efficiency of PhyAsr, and determined the structure of the enzyme at several ionic strengths. The catalytic efficiency of PhyAsr is highly sensitive to ionic strength, with a seven-fold increase in k(cat)/K(m) and a ninefold decrease in K(m) when the ionic strength is increased from 100 to 500 mm. Surprisingly, the P-loop is observed in the catalytically competent conformation at all ionic strengths, despite the absence of a ligand. Here we provide structural evidence that the ionic strength dependence of PhyAsr and the conformational change in the P-loop are not linked. Furthermore, we demonstrate that the previously reported P-loop conformational change is a result of irreversible oxidation of the active site thiolate. Finally, we rationalize the observed P-loop conformational changes observed in all oxidized PTP structures.


Asunto(s)
6-Fitasa/química , Proteínas Tirosina Fosfatasas/química , Catálisis , Cinética , Modelos Moleculares , Concentración Osmolar , Oxidación-Reducción , Conformación Proteica
4.
Nat Microbiol ; 3(2): 210-219, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29255254

RESUMEN

The major nutrients available to human colonic Bacteroides species are glycans, exemplified by pectins, a network of covalently linked plant cell wall polysaccharides containing galacturonic acid (GalA). Metabolism of complex carbohydrates by the Bacteroides genus is orchestrated by polysaccharide utilization loci (PULs). In Bacteroides thetaiotaomicron, a human colonic bacterium, the PULs activated by different pectin domains have been identified; however, the mechanism by which these loci contribute to the degradation of these GalA-containing polysaccharides is poorly understood. Here we show that each PUL orchestrates the metabolism of specific pectin molecules, recruiting enzymes from two previously unknown glycoside hydrolase families. The apparatus that depolymerizes the backbone of rhamnogalacturonan-I is particularly complex. This system contains several glycoside hydrolases that trim the remnants of other pectin domains attached to rhamnogalacturonan-I, and nine enzymes that contribute to the degradation of the backbone that makes up a rhamnose-GalA repeating unit. The catalytic properties of the pectin-degrading enzymes are optimized to protect the glycan cues that activate the specific PULs ensuring a continuous supply of inducing molecules throughout growth. The contribution of Bacteroides spp. to metabolism of the pectic network is illustrated by cross-feeding between organisms.


Asunto(s)
Bacteroides/metabolismo , Colon/microbiología , Dieta , Pectinas/metabolismo , Polisacáridos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteroides/enzimología , Bacteroides/genética , Bacteroides/crecimiento & desarrollo , Genes Bacterianos/genética , Glicósido Hidrolasas , Ácidos Hexurónicos , Humanos , Mutagénesis Sitio-Dirigida , Células Vegetales/metabolismo
5.
Protein Sci ; 16(7): 1368-78, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17567745

RESUMEN

PhyA from Selenomonas ruminantium (PhyAsr), is a bacterial protein tyrosine phosphatase (PTP)-like inositol polyphosphate phosphatase (IPPase) that is distantly related to known PTPs. PhyAsr has a second substrate binding site referred to as a standby site and the P-loop (HCX5R) has been observed in both open (inactive) and closed (active) conformations. Site-directed mutagenesis and kinetic and structural studies indicate PhyAsr follows a classical PTP mechanism of hydrolysis and has a broad specificity toward polyphosphorylated myo-inositol substrates, including phosphoinositides. Kinetic and molecular docking experiments demonstrate PhyAsr preferentially cleaves the 3-phosphate position of Ins P6 and will produce Ins(2)P via a highly ordered series of sequential dephosphorylations: D-Ins(1,2,4,5,6)P5, Ins(2,4,5,6)P4, D-Ins(2,4,5)P3, and D-Ins(2,4)P2. The data support a distributive enzyme mechanism and suggest the PhyAsr standby site is involved in the recruitment of substrate. Structural studies at physiological pH and high salt concentrations demonstrate the "closed" or active P-loop conformation can be induced in the absence of substrate. These results suggest PhyAsr should be reclassified as a D-3 myo-inositol hexakisphosphate phosphohydrolase and suggest the PhyAsr reaction mechanism is more similar to that of PTPs than previously suspected.


Asunto(s)
Ácido Anhídrido Hidrolasas/química , Proteínas Bacterianas/química , Proteínas Tirosina Fosfatasas/química , Selenomonas/enzimología , Ácido Anhídrido Hidrolasas/genética , Ácido Anhídrido Hidrolasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Concentración de Iones de Hidrógeno , Hidrólisis , Inositol/química , Inositol/metabolismo , Fosfatos de Inositol/química , Fosfatos de Inositol/metabolismo , Datos de Secuencia Molecular , Fosforilación , Ácido Fítico/química , Ácido Fítico/metabolismo , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Selenomonas/genética , Especificidad por Sustrato
6.
Methods Mol Biol ; 1588: 199-208, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28417370

RESUMEN

Investigating the subcellular location of secreted proteins is valuable for illuminating their biological function. Although several bioinformatics programs currently exist to predict the destination of a trafficked protein using its signal peptide sequence, these programs have limited accuracy and often require experimental validation. Here, we present a systematic method to fractionate gram-negative cells and characterize the subcellular localization of secreted carbohydrate active enzymes (CAZymes). This method involves four parallel approaches that reveal the relative abundance of protein within the cytoplasm, periplasm, outer membrane, and extracellular environment. Cytoplasmic and periplasmic proteins are fractionated by lysis and osmotic shock, respectively. Outer membrane bound proteins are determined by comparing cells before and after exoproteolytic digestion. Extracellularly secreted proteins are collected from the media and concentrated. These four different fractionations can then be probed for the presence and quantity of target proteins using immunochemical methods such as Western blots and ELISAs, or enzyme activity assays.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Enzimas/aislamiento & purificación , Bacterias Gramnegativas/enzimología , Periplasma/enzimología , Proteínas Bacterianas , Enzimas/análisis , Bacterias Gramnegativas/citología , Señales de Clasificación de Proteína
7.
BMC Biochem ; 7: 24, 2006 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-17192193

RESUMEN

BACKGROUND: Diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the acyl-CoA-dependent acylation of sn-1, 2-diacylglycerol to generate triacylglycerol and CoA. The deduced amino acid sequence of cDNAs encoding DGAT1 from plants and mammals exhibit a hydrophilic N-terminal region followed by a number of potential membrane-spanning segments, which is consistent with the membrane-bound nature of this enzyme family. In order to gain insight into the structure/function properties of DGAT1 from Brassica napus (BnDGAT1), we produced and partially characterized a recombinant polyHis-tagged N-terminal fragment of the enzyme, BnDGAT1(1-116)His6, with calculated molecular mass of 13,278 Da. RESULTS: BnDGAT1(1-116)His6 was highly purified from bacterial lysate and plate-like monoclinic crystals were grown using this preparation. Lipidex-1000 binding assays and gel electrophoresis indicated that BnDGAT1(1-116)His6 interacts with long chain acyl-CoA. The enzyme fragment displayed enhanced affinity for erucoyl (22:1cisDelta13)-CoA over oleoyl (18:1cisDelta9)-CoA, and the binding process displayed positive cooperativity. Gel filtration chromatography and cross-linking studies indicated that BnDGAT1(1-116)His6 self-associated to form a tetramer. Polyclonal antibodies raised against a peptide of 15 amino acid residues representing a segment of BnDGAT1(1-116)His6 failed to react with protein in microsomal vesicles following treatment with proteinase K, suggesting that the N-terminal fragment of BnDGAT1 was localized to the cytosolic side of the ER. CONCLUSION: Collectively, these results suggest that BnDGAT1 may be allosterically modulated by acyl-CoA through the N-terminal region and that the enzyme self-associates via interactions on the cytosolic side of the ER.


Asunto(s)
Brassica napus/enzimología , Diacilglicerol O-Acetiltransferasa/química , Proteínas de Plantas/química , Acilcoenzima A/metabolismo , ADN Complementario , Diacilglicerol O-Acetiltransferasa/genética , Diacilglicerol O-Acetiltransferasa/aislamiento & purificación , Diacilglicerol O-Acetiltransferasa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Relación Estructura-Actividad , Especificidad por Sustrato
8.
PLoS One ; 9(4): e94403, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24718691

RESUMEN

Bdellovibrio bacteriovorus is an unusual δ-proteobacterium that invades and preys on other Gram-negative bacteria and is of potential interest as a whole cell therapeutic against pathogens of man, animals and crops. PTPs (protein tyrosine phosphatases) are an important class of enzyme involved in desphosphorylating a variety of substrates, often with implications in cell signaling. The B. bacteriovorus open reading frame Bd1204 is predicted to encode a PTP of unknown function. Bd1204 is both structurally and mechanistically related to the PTP-like phytase (PTPLP) class of enzymes and possesses a number of unique properties not observed in any other PTPLPs characterized to date. Bd1204 does not display catalytic activity against some common protein tyrosine phosphatase substrates but is highly specific for hydrolysis of phosphomonoester bonds of inositol hexakisphosphate. The structure reveals that Bd1204 has the smallest and least electropositive active site of all characterized PTPLPs to date yet possesses a unique substrate specificity characterized by a strict preference for inositol hexakisphosphate. These two active site features are believed to be the most significant contributors to the specificity of phytate degrading enzymes. We speculate that Bd1204 may be involved in phosphate acquisition outside of prey.


Asunto(s)
6-Fitasa/química , 6-Fitasa/metabolismo , Bdellovibrio/enzimología , Proteínas Tirosina Fosfatasas/química , Proteínas Tirosina Fosfatasas/metabolismo , 6-Fitasa/genética , Secuencia de Aminoácidos , Biocatálisis , Dominio Catalítico , Secuencia Conservada , Cristalografía por Rayos X , Perfilación de la Expresión Génica , Modelos Moleculares , Proteínas Tirosina Fosfatasas/genética , Electricidad Estática , Homología Estructural de Proteína , Relación Estructura-Actividad , Especificidad por Sustrato , Transcripción Genética
9.
J Mol Biol ; 392(1): 75-86, 2009 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-19500593

RESUMEN

Mitsuokella multacida expresses a unique inositol polyphosphatase (PhyAmm) that is composed of tandem repeats (TRs). Each repeat possesses a protein tyrosine phosphatase (PTP) active-site signature sequence and fold. Using a combination of structural, mutational, and kinetic studies, we show that the N-terminal (D1) and C-terminal (D2) active sites of the TR have diverged and possess significantly different specificities for inositol polyphosphate. Structural analysis and molecular docking calculations identify steric and electrostatic differences within the substrate binding pocket of each TR that may be involved in the altered substrate specificity. The implications of our results for the biological function of related PTP-like phytases are discussed. Finally, the structures and activities of PhyAmm and tandemly repeated receptor PTPs are compared and discussed. To our knowledge, this is the first example of an inositol phosphatase with tandem PTP domains possessing substrate specificity for different inositol phosphates.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/metabolismo , Veillonellaceae/enzimología , Veillonellaceae/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Dominio Catalítico , Cristalografía por Rayos X/métodos , Análisis Mutacional de ADN , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Monoéster Fosfórico Hidrolasas/genética , Estructura Terciaria de Proteína , Alineación de Secuencia , Especificidad por Sustrato , Secuencias Repetidas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA