Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cancer Immunol Immunother ; 67(1): 47-60, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28905118

RESUMEN

The delivery of immunomodulators directly into the tumor potentially harnesses the existing antigen, tumor-specific infiltrating lymphocytes, and antigen presenting cells. This can confer specificity and generate a potent systemic anti-tumor immune response with lower doses and less toxicity compared to systemic administration, in effect an in situ vaccine. Here, we test this concept using the novel combination of immunomodulators anti-CTLA4, -CD137, and -OX40. The triple combination administered intratumorally at low doses to one tumor of a dual tumor mouse model had dramatic local and systemic anti-tumor efficacy in lymphoma (A20) and solid tumor (MC38) models, consistent with an abscopal effect. The minimal effective dose was 10 µg each. The effect was dependent on CD8 T-cells. Intratumoral administration resulted in superior local and distant tumor control compared to systemic routes, supporting the in situ vaccine concept. In a single tumor A20 model, injection close to the tDLN resulted in similar efficacy as intratumoral and significantly better than targeting a non-tDLN, supporting the role of the tDLN as a viable immunotherapy target in addition to the tumor itself. Distribution studies confirmed expected concentration of antibodies in tumor and tDLN, in keeping with the anti-tumor results. Overall intratumoral or peri-tDLN administration of the novel combination of anti-CTLA4, anti-CD137, and anti-OX40, all agents in the clinic or clinical trials, demonstrates potent systemic anti-tumor effects. This immunotherapeutic combination is promising for future clinical development via both these safe and highly efficacious routes of administration.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Linfocitos T CD8-positivos/inmunología , Vacunas contra el Cáncer/inmunología , Neoplasias del Colon/terapia , Inmunoterapia/métodos , Linfoma/terapia , Ganglio Linfático Centinela/patología , Animales , Antígeno CTLA-4/inmunología , Neoplasias del Colon/inmunología , Modelos Animales de Enfermedad , Quimioterapia Combinada , Femenino , Humanos , Linfoma/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Receptores OX40/inmunología , Inducción de Remisión , Ganglio Linfático Centinela/efectos de los fármacos , Carga Tumoral/efectos de los fármacos , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunología
2.
Proc Natl Acad Sci U S A ; 109(17): 6662-7, 2012 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-22451913

RESUMEN

CD47, a "don't eat me" signal for phagocytic cells, is expressed on the surface of all human solid tumor cells. Analysis of patient tumor and matched adjacent normal (nontumor) tissue revealed that CD47 is overexpressed on cancer cells. CD47 mRNA expression levels correlated with a decreased probability of survival for multiple types of cancer. CD47 is a ligand for SIRPα, a protein expressed on macrophages and dendritic cells. In vitro, blockade of CD47 signaling using targeted monoclonal antibodies enabled macrophage phagocytosis of tumor cells that were otherwise protected. Administration of anti-CD47 antibodies inhibited tumor growth in orthotopic immunodeficient mouse xenotransplantation models established with patient tumor cells and increased the survival of the mice over time. Anti-CD47 antibody therapy initiated on larger tumors inhibited tumor growth and prevented or treated metastasis, but initiation of the therapy on smaller tumors was potentially curative. The safety and efficacy of targeting CD47 was further tested and validated in immune competent hosts using an orthotopic mouse breast cancer model. These results suggest all human solid tumor cells require CD47 expression to suppress phagocytic innate immune surveillance and elimination. These data, taken together with similar findings with other human neoplasms, show that CD47 is a commonly expressed molecule on all cancers, its function to block phagocytosis is known, and blockade of its function leads to tumor cell phagocytosis and elimination. CD47 is therefore a validated target for cancer therapies.


Asunto(s)
Antígenos de Diferenciación/metabolismo , Antígeno CD47/inmunología , Neoplasias/inmunología , ARN Mensajero/genética , Receptores Inmunológicos/metabolismo , Anticuerpos/inmunología , Antígeno CD47/genética , División Celular/inmunología , Citometría de Flujo , Humanos , Neoplasias/patología , Neoplasias/terapia , Fagocitosis/inmunología , Pronóstico , Análisis de Supervivencia
3.
Stem Cells ; 30(10): 2114-27, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22899386

RESUMEN

Poorly regulated tissue remodeling results in increased breast cancer risk, yet how breast cancer stem cells (CSC) participate in remodeling is unknown. We performed in vivo imaging of changes in fluorescent, endogenous duct architecture as a metric for remodeling. First, we quantitatively imaged physiologic remodeling of primary branches of the developing and regenerating mammary tree. To assess CSC-specific remodeling events, we isolated CSC from MMTV-Wnt1 (mouse mammary tumor virus long-term repeat enhancer driving Wnt1 oncogene) breast tumors, a well studied model in which tissue remodeling affects tumorigenesis. We confirm that CSC drive tumorigenesis, suggesting a link between CSC and remodeling. We find that normal, regenerating, and developing gland maintain a specific branching pattern. In contrast, transplantation of CSC results in changes in the branching patterns of endogenous ducts while non-CSC do not. Specifically, in the presence of CSC, we identified an increased number of branches, branch points, ducts which have greater than 40 branches (5/33 for CSC and 0/39 for non-CSC), and histological evidence of increased branching. Moreover, we demonstrate that only CSC implants invade into surrounding stroma with structures similar to developing mammary ducts (nine for CSC and one for non-CSC). Overall, we demonstrate a novel approach for imaging physiologic and pathological remodeling. Furthermore, we identify unique, CSC-specific, remodeling events. Our data suggest that CSC interact with the microenvironment differently than non-CSC, and that this could eventually be a therapeutic approach for targeting CSC.


Asunto(s)
Transformación Celular Neoplásica/patología , Neoplasias Mamarias Experimentales/patología , Células Madre Neoplásicas/ultraestructura , Animales , Transformación Celular Neoplásica/metabolismo , Epitelio/ultraestructura , Femenino , Colorantes Fluorescentes , Genes Reporteros , Proteínas Fluorescentes Verdes , Humanos , Procesamiento de Imagen Asistido por Computador , Neoplasias Mamarias Experimentales/metabolismo , Virus del Tumor Mamario del Ratón/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía de Fluorescencia por Excitación Multifotónica , Imagen Molecular , Células Madre Neoplásicas/trasplante , Transducción de Señal , Microambiente Tumoral , Proteína Wnt1/metabolismo
4.
Cancer Metab ; 9(1): 31, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34399819

RESUMEN

BACKGROUND: Metabolic reprogramming is a central feature in many cancer subtypes and a hallmark of cancer. Many therapeutic strategies attempt to exploit this feature, often having unintended side effects on normal metabolic programs and limited efficacy due to integrative nature of metabolic substrate sourcing. Although the initiating oncogenic lesion may vary, tumor cells in lymphoid malignancies often share similar environments and potentially similar metabolic profiles. We examined cells from mouse models of MYC-, RAS-, and BCR-ABL-driven lymphoid malignancies and find a convergence on de novo lipogenesis. We explore the potential role of MYC in mediating lipogenesis by 13C glucose tracing and untargeted metabolic profiling. Inhibition of lipogenesis leads to cell death both in vitro and in vivo and does not induce cell death of normal splenocytes. METHODS: We analyzed RNA-seq data sets for common metabolic convergence in lymphoma and leukemia. Using in vitro cell lines derived in from conditional MYC, RAS, and BCR-ABL transgenic murine models and oncogene-driven human cell lines, we determined gene regulation, metabolic profiles, and sensitivity to inhibition of lipogenesis in lymphoid malignancies. We utilize preclinical murine models and transgenic primary model of T-ALL to determine the effect of lipogenesis blockade across BCR-ABL-, RAS-, and c-MYC-driven lymphoid malignancies. Statistical significance was calculated using unpaired t-tests and one-way ANOVA. RESULTS: This study illustrates that de novo lipid biogenesis is a shared feature of several lymphoma subtypes. Using cell lines derived from conditional MYC, RAS, and BCR-ABL transgenic murine models, we demonstrate shared responses to inhibition of lipogenesis by the acetyl-coA carboxylase inhibitor 5-(tetradecloxy)-2-furic acid (TOFA), and other lipogenesis inhibitors. We performed metabolic tracing studies to confirm the influence of c-MYC and TOFA on lipogenesis. We identify specific cell death responses to TOFA in vitro and in vivo and demonstrate delayed engraftment and progression in vivo in transplanted lymphoma cell lines. We also observe delayed progression of T-ALL in a primary transgenic mouse model upon TOFA administration. In a panel of human cell lines, we demonstrate sensitivity to TOFA treatment as a metabolic liability due to the general convergence on de novo lipogenesis in lymphoid malignancies driven by MYC, RAS, or BCR-ABL. Importantly, cell death was not significantly observed in non-malignant cells in vivo. CONCLUSIONS: These studies suggest that de novo lipogenesis may be a common survival strategy for many lymphoid malignancies and may be a clinically exploitable metabolic liability. TRIAL REGISTRATION: This study does not include any clinical interventions on human subjects.

5.
Nat Biotechnol ; 30(6): 531-42, 2012 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-22634564

RESUMEN

To identify early populations of committed progenitors derived from human embryonic stem cells (hESCs), we screened self-renewing, BMP4-treated and retinoic acid-treated cultures with >400 antibodies recognizing cell-surface antigens. Sorting of >30 subpopulations followed by transcriptional analysis of developmental genes identified four distinct candidate progenitor groups. Subsets detected in self-renewing cultures, including CXCR4(+) cells, expressed primitive endoderm genes. Expression of Cxcr4 in primitive endoderm was confirmed in visceral endoderm of mouse embryos. BMP4-induced progenitors exhibited gene signatures of mesoderm, trophoblast and vascular endothelium, suggesting correspondence to gastrulation-stage primitive streak, chorion and allantois precursors, respectively. Functional studies in vitro and in vivo confirmed that ROR2(+) cells produce mesoderm progeny, APA(+) cells generate syncytiotrophoblasts and CD87(+) cells give rise to vasculature. The same progenitor classes emerged during the differentiation of human induced pluripotent stem cells (hiPSCs). These markers and progenitors provide tools for purifying human tissue-regenerating progenitors and for studying the commitment of pluripotent stem cells to lineage progenitors.


Asunto(s)
Endodermo/citología , Endotelio Vascular/citología , Mesodermo/citología , Células Madre Pluripotentes/citología , Trofoblastos/citología , Animales , Antígenos de Superficie/química , Biomarcadores/química , Análisis por Conglomerados , Endodermo/química , Endotelio Vascular/química , Citometría de Flujo , Glutamil Aminopeptidasa/genética , Humanos , Mesodermo/química , Ratones , Ratones Transgénicos , Células Madre Pluripotentes/química , Células Madre Pluripotentes/clasificación , Receptores CXCR4/biosíntesis , Receptores CXCR4/genética , Trofoblastos/química
6.
Nat Biotechnol ; 29(9): 829-34, 2011 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-21841799

RESUMEN

An important risk in the clinical application of human pluripotent stem cells (hPSCs), including human embryonic and induced pluripotent stem cells (hESCs and hiPSCs), is teratoma formation by residual undifferentiated cells. We raised a monoclonal antibody against hESCs, designated anti-stage-specific embryonic antigen (SSEA)-5, which binds a previously unidentified antigen highly and specifically expressed on hPSCs--the H type-1 glycan. Separation based on SSEA-5 expression through fluorescence-activated cell sorting (FACS) greatly reduced teratoma-formation potential of heterogeneously differentiated cultures. To ensure complete removal of teratoma-forming cells, we identified additional pluripotency surface markers (PSMs) exhibiting a large dynamic expression range during differentiation: CD9, CD30, CD50, CD90 and CD200. Immunohistochemistry studies of human fetal tissues and bioinformatics analysis of a microarray database revealed that concurrent expression of these markers is both common and specific to hPSCs. Immunodepletion with antibodies against SSEA-5 and two additional PSMs completely removed teratoma-formation potential from incompletely differentiated hESC cultures.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Células Madre Pluripotentes/citología , Polisacáridos/metabolismo , Antígenos Embrionarios Específico de Estadio/metabolismo , Teratoma/patología , Animales , Biomarcadores , Diferenciación Celular , Células Cultivadas , Biología Computacional , Citometría de Flujo , Regulación de la Expresión Génica , Humanos , Inmunohistoquímica , Ratones , Ratones Endogámicos BALB C , Análisis por Micromatrices , Células Madre Pluripotentes/química , Reacción en Cadena en Tiempo Real de la Polimerasa , Teratoma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA