Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-25726170

RESUMEN

The in vitro micronucleus assay with TK6 cells is frequently used as part of the genotoxicity testing battery for pharmaceuticals. Consequently, follow-up testing strategies are needed for positive compounds to determine their mode of action, which would then allow for deployment of appropriate in vivo follow-up strategies. We have chosen 3 micronucleus positive compounds, the clastogen etoposide, the aneugen noscapine and the cytotoxicant tunicamycin to evaluate different approaches to determine their aneugenic or clastogenic properties. Each of the three compounds were evaluated following 4 and 24h of continuous treatment by flow cytometry for micronucleus induction, the aneugenicity markers phosphorylated-histone 3 (p-H3) and polyploidy, the clastogenicity marker γH2AX and the apoptosis marker cleaved caspase 3. They were further evaluated by Western blot for mono-ubiquitinated and γH2AX. Results show that the clastogen etoposide produced a dose related increase in γH2AX and mono-ubiquitinated H2AX and a dose related decrease in p-H3 positive mitotic cells. Conversely, the aneugen produced increases in p-H3 and polyploidy with no significant increases seen in mono-ubiquitinated H2AX or γH2AX. Lastly, the cytotoxicant tunicamycin induced neither an increase in p-H3 nor γH2AX. All three compounds produced dose-related increases in cleaved caspase 3. The results from this study provide evidence that adding clastogenicity and aneugenicity markers to the in vitro micronucleus assay in TK6 cells could help to identify the mode of action of positive compounds. The combination of endpoints suggested here needs to be further evaluated by a broader set of test compounds.


Asunto(s)
Aneugénicos/farmacología , Histonas/metabolismo , Linfocitos/efectos de los fármacos , Pruebas de Micronúcleos , Mutágenos/farmacología , Apoptosis/efectos de los fármacos , Biomarcadores/metabolismo , Caspasa 3/genética , Caspasa 3/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Etopósido/farmacología , Citometría de Flujo , Expresión Génica/efectos de los fármacos , Histonas/genética , Humanos , Linfocitos/citología , Linfocitos/metabolismo , Noscapina/farmacología , Fosforilación , Poliploidía , Tunicamicina/farmacología
2.
Environ Mol Mutagen ; 55(7): 542-55, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24756928

RESUMEN

The specificity of in vitro mammalian cell genotoxicity assays is low, as they yield a high incidence of positive results that are not observed in animal genotoxicity and carcinogenicity tests, that is, "misleading" or "irrelevant" positives. We set out to develop a rapid and effective follow-up testing strategy that would predict whether apparent in vitro micronucleus-inducing effects are due to a clastogenic, aneugenic, or secondary irrelevant mode(s) of action. Priority was given to biomarkers that could be multiplexed onto flow cytometric acquisition of micronucleus frequencies, or that could be accomplished in parallel using a homogeneous-type assay. A training set of 30 chemicals comprised of clastogens, aneugens, and misleading positive chemicals was studied. These experiments were conducted with human TK6 cells over a range of closely spaced concentrations in a continuous exposure design. In addition to micronucleus frequency, the following endpoints were investigated, most often at time of harvest: cleaved Parp-positive chromatin, cleaved caspase 3-positive chromatin, ethidium monoazide bromide-positive chromatin, polyploid nuclei, phospho-histone H3-positive (metaphase) cells, tetramethylrhodamine ethyl ester-negative cells, cellular ATP levels, cell cycle perturbation, and shift in γ-H2AX fluorescence relative to solvent control. Logistic regression was used to identify endpoints that effectively predict chemicals' a priori classification. Cross validation using a leave-one-out approach indicated that a promising base model includes γ-H2AX shift and change in phospho-histone H3-positive events (25/30 correct calls). Improvements were realized when one or two additional endpoints were included (26-30/30 correct calls). These models were further evaluated with a test set of 10 chemicals, and also by evaluating 3 chemicals at a collaborating laboratory. The resulting data support the hypothesis that a matrix of high throughput-compatible biomarkers can effectively delineate two important modes of genotoxic action as well as identify cytotoxicity that can lead to irrelevant positive results.


Asunto(s)
Aneugénicos/toxicidad , Biomarcadores/análisis , Pruebas de Micronúcleos/métodos , Mutágenos/toxicidad , Azidas/química , Caspasa 3/metabolismo , Cromatina/química , Citometría de Flujo , Histonas/química , Humanos , Compuestos Orgánicos/química , Ploidias , Poli(ADP-Ribosa) Polimerasas/metabolismo , Análisis de Regresión , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA