Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(24)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36559978

RESUMEN

This paper presents a method for estimating the six Degrees of Freedom (6DoF) pose of texture-less objects from a monocular image by using edge information. The deep learning-based pose estimation method needs a large dataset containing pairs of an image and ground truth pose of objects. To alleviate the cost of collecting a dataset, we focus on the method using a dataset made by computer graphics (CG). This simulation-based method prepares a thousand images by rendering the computer-aided design (CAD) data of the object and trains a deep-learning model. As an inference stage, a monocular RGB image is entered into the model, and the object's pose is estimated. The representative simulation-based method, Pose Interpreter Networks, uses silhouette images as the input, thereby enabling common feature (contour) extraction from RGB and CG images. However, estimating rotation parameters is less accurate. To overcome this problem, we propose a method to use edge information extracted from the object's ridgelines for training the deep learning model. Since edge distribution changes largely according to the pose, the estimation of rotation parameters becomes more robust. Through an experiment with simulation data, we quantitatively proved the accuracy improvement compared to the previous method (error rate decreases at a certain condition are translation 22.9% and rotation: 43.4%). Moreover, through an experiment with physical data, we clarified the issues of this method and proposed an effective solution by fine-tuning (error rate decrease at a certain condition are translation 20.1% and rotation 57.7%).


Asunto(s)
Simulación por Computador
2.
IEEE Trans Vis Comput Graph ; 24(7): 2118-2128, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29813019

RESUMEN

Inspection tasks focus on observation of the environment and are required in many industrial domains. Inspectors usually execute these tasks by using a guide such as a paper manual, and directly observing the environment. The effort required to match the information in a guide with the information in an environment and the constant gaze shifts required between the two can severely lower the work efficiency of inspector in performing his/her tasks. Augmented reality (AR) allows the information in a guide to be overlaid directly on an environment. This can decrease the amount of effort required for information matching, thus increasing work efficiency. AR guides on head-mounted displays (HMDs) have been shown to increase efficiency. Handheld AR (HAR) is not as efficient as HMD-AR in terms of manipulability, but is more practical and features better information input and sharing capabilities. In this study, we compared two handheld guides: an AR interface that shows 3D registered annotations, that is, annotations having a fixed 3D position in the AR environment, and a non-AR picture interface that displays non-registered annotations on static images. We focused on inspection tasks that involve high information density and require the user to move, as well as to perform several viewpoint alignments. The results of our comparative evaluation showed that use of the AR interface resulted in lower task completion times, fewer errors, fewer gaze shifts, and a lower subjective workload. We are the first to present findings of a comparative study of an HAR and a picture interface when used in tasks that require the user to move and execute viewpoint alignments, focusing only on direct observation. Our findings can be useful for AR practitioners and psychology researchers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA